Skip to main content
Birkhäuser

Motion and Genetic Definitions in the Sixteenth-Century Euclidean Tradition

  • Book
  • © 2021

Overview

  • Contains the conceptions and treatment of genetic definitions in the 16th century Euclidean tradition
  • Tackles the status and uses of motion in pre- and early modern geometry
  • Provides insight into the mathematical practices of leading 16th century commentators of Euclid’s Elements

Part of the book series: Frontiers in the History of Science (FRHIS)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (10 chapters)

Keywords

About this book

A significant number of works have set forth, over the past decades, the emphasis laid by seventeenth-century mathematicians and philosophers on motion and kinematic notions in geometry. These works demonstrated the crucial role attributed in this context to genetic definitions, which state the mode of generation of geometrical objects instead of their essential properties. While the growing importance of genetic definitions in sixteenth-century commentaries on Euclid’s Elements has been underlined, the place, uses and status of motion in this geometrical tradition has however never been thoroughly and comprehensively studied. This book therefore undertakes to fill a gap in the history of early modern geometry and philosophy of mathematics by investigating the different treatments of motion and genetic definitions by seven major sixteenth-century commentators on Euclid’s Elements, from Oronce Fine (1494–1555) to Christoph Clavius (1538–1612), including Jacques Peletier (1517–1582), John Dee (1527–1608/1609) and Henry Billingsley (d. 1606), among others. By investigating the ontological and epistemological conceptions underlying the introduction and uses of kinematic notions in their interpretation of Euclidean geometry, this study displays the richness of the conceptual framework, philosophical and mathematical, inherent to the sixteenth-century Euclidean tradition and shows how it contributed to a more generalised acceptance and promotion of kinematic approaches to geometry in the early modern period.

Reviews

“Axworthy's book fills a gap in the history of the understanding of Euclid's Elements by showing how various commentators have understood the use of kinematic concepts in Euclidean geometry. She concludes her work by showing how the ideas of these commentators contributed to the further acceptance of kinematic approaches to geometry in the work of Descartes and others in the following century.” (Victor J. Katz, Mathematical Reviews, November, 2023)

Authors and Affiliations

  • Max Planck Institute for the History of Science, Berlin, Germany

    Angela Axworthy

Bibliographic Information

Publish with us