Skip to main content

Modeling Complex Turbulent Flows

  • Book
  • © 1999

Overview

Part of the book series: ICASE LaRC Interdisciplinary Series in Science and Engineering (ICAS, volume 7)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (20 chapters)

Keywords

About this book

Turbulence modeling both addresses a fundamental problem in physics, 'the last great unsolved problem of classical physics,' and has far-reaching importance in the solution of difficult practical problems from aeronautical engineering to dynamic meteorology. However, the growth of supercom­ puter facilities has recently caused an apparent shift in the focus of tur­ bulence research from modeling to direct numerical simulation (DNS) and large eddy simulation (LES). This shift in emphasis comes at a time when claims are being made in the world around us that scientific analysis itself will shortly be transformed or replaced by a more powerful 'paradigm' based on massive computations and sophisticated visualization. Although this viewpoint has not lacked ar­ ticulate and influential advocates, these claims can at best only be judged premature. After all, as one computational researcher lamented, 'the com­ puter only does what I tell it to do, and not what I want it to do. ' In turbulence research, the initial speculation that computational meth­ ods would replace not only model-based computations but even experimen­ tal measurements, have not come close to fulfillment. It is becoming clear that computational methods and model development are equal partners in turbulence research: DNS and LES remain valuable tools for suggesting and validating models, while turbulence models continue to be the preferred tool for practical computations. We believed that a symposium which would reaffirm the practical and scientific importance of turbulence modeling was both necessary and timely.

Editors and Affiliations

  • NASA Langley Research Center, Institute for Computer Applications in Science and Engineering, Hampton, USA

    Manuel D. Salas

  • NASA Langley Research Center, Hampton, USA

    Jerry N. Hefner

  • Bolling Air Force Base, Air Force Office of Scientific Research, USA

    Leonidas Sakell

Bibliographic Information

Publish with us