Logo - springer
Slogan - springer

Physics - Classical Continuum Physics | High-Resolution Methods for Incompressible and Low-Speed Flows

High-Resolution Methods for Incompressible and Low-Speed Flows

Drikakis, D., Rider, W.

2005, XX, 622 p. 480 illus.

Available Formats:
eBook
Information

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.

 
$199.00

(net) price for USA

ISBN 978-3-540-26454-5

digitally watermarked, no DRM

Included Format: PDF

download immediately after purchase


learn more about Springer eBooks

add to marked items

Hardcover
Information

Hardcover version

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$259.00

(net) price for USA

ISBN 978-3-540-22136-4

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

Softcover
Information

Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$259.00

(net) price for USA

ISBN 978-3-642-06051-9

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

Dimitris Drikakis is Professor and Head of Fluid Mechanics and Computational Science Group at Cranfield University, United Kingdom. His research interests include computational methods, modeling of turbulent flows, unsteady aerodynamics, flow instabilities, shock waves and gas dynamics, biological flows, computational nanotechnology and nanoscience, and high performance computing.

William Rider is project and team leader in the Continuum Dynamics Group in the Computer and Computational Sciences Division of the Los Alamos National Laboratory (LANL), U.S.A. His principal interest is computational physics with an emphasis on fluid dynamics, radiation transport, turbulent mixing, shock physics, code verification, code validation and models for turbulence.

This book covers the basic techniques for simulating incompressible and low-speed flows with high fidelity in conjunction with high-resolution methods. This includes techniques for steady and unsteady flows with high-order time integration and multigrid methods, as well as specific issues associated with interfacial and turbulent flows. The book is addressed to a broad readership, including engineers and scientists concerned with the development or application of computational methods for fluid flow problems in: Mechanical, Aerospace, Civil and Chemical Engineering, Biological Flows, Atmospheric and Oceanographic Applications as well as other Environmental disciplines. It can be used for teaching postgraduate courses on Computational Fluid Dynamics and Numerical Methods in Engineering and Applied Mathematics, and can also be used as a complementary textbook in undergraduate CFD courses.

Content Level » Research

Keywords » High-resolution - Incompressible - Low-speed - Non-oscillatory - Turbulence - computational fluid dynamics - fluid dynamics

Related subjects » Classical Continuum Physics - Computational Intelligence and Complexity - Computational Science & Engineering - Mechanics

Table of contents 

Fundamental Physical and Model Equations.- The Fluid Flow Equations.- The Viscous Fluid Flow Equations.- Curvilinear Coordinates and Transformed Equations.- Overview of Various Formulations and Model Equations.- Basic Principles in Numerical Analysis.- Time Integration Methods.- Numerical Linear Algebra.- Solution Approaches.- Compressible and Preconditioned-Compressible Solvers.- The Artificial Compressibility Method.- Projection Methods: The Basic Theory and the Exact Projection Method.- Approximate Projection Methods.- Modern High-Resolution Methods.- to Modern High-Resolution Methods.- High-Resolution Godunov-Type Methods for Projection Methods.- Centered High-Resolution Methods.- Riemann Solvers and TVD Methods in Strict Conservation Form.- Beyond Second-Order Methods.- Applications.- Variable Density Flows and Volume Tracking Methods.- High-Resolution Methods and Turbulent Flow Computation.

Popular Content within this publication 

 

Articles

Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Acoustics.

Additional information