Skip to main content

Fundamentals of van der Waals and Casimir Interactions

  • Book
  • © 2018

Overview

  • Presents the fundamentals of van der Waals and Casimir interactions
  • Displays van der Waals and Casimir interactions in microscopic, mesoscopic, and macroscopic systems of various shapes and materials
  • Summarizes applications of van der Waals and Casimir interactions in physics, chemistry, biology, medicine, and cosmology

Part of the book series: Springer Series on Atomic, Optical, and Plasma Physics (SSAOPP, volume 102)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (16 chapters)

Keywords

About this book

This book presents a self-contained derivation of van der Waals and Casimir type dispersion forces, covering the interactions between two atoms but also between microscopic, mesoscopic, and macroscopic objects of various shapes and materials. It also presents detailed and general prescriptions for finding the normal modes and the interactions in layered systems of planar, spherical and cylindrical types, with two-dimensional sheets, such as graphene incorporated in the formalism.

A detailed derivation of the van der Waals force and Casimir-Polder force between two polarizable atoms serves as the starting point for the discussion of forces: Dispersion forces, of van der Waals and Casimir type, act on bodies of all size, from atoms up to macroscopic objects. The smaller the object the more these forces dominate and as a result they play a key role in modern nanotechnology through effects such as stiction. They show up in almost all fields of science, including physics, chemistry, biology, medicine, and even cosmology.

Written by a condensed matter physicist in the language of condensed matter physics, the book shows readers how to obtain the electromagnetic normal modes, which for metallic systems, is especially useful in the field of plasmonics.

Authors and Affiliations

  • Linköping University , Linköping, Sweden

    Bo E. Sernelius

About the author

Bo Sernelius graduated from Linköping Institute of Technology in 1973, and received a PhD in Theoretical Physics in 1978. From 1978 to 2000 he was a senior researcher and senior lecturer at Linköping Institute of Technology, and from 1985 to ’87 he served as visiting associate professor at the University of Tennessee/Oak Ridge National Laboratory, USA (with Gerald D. Mahan). Between 2000 and 2014 he held a position as professor of Theoretical Physics at Linköping University. In 2000 he again became a visiting scientist at the University of Tennessee/Oak Ridge National Laboratory, USA (with Gerald D. Mahan) for one year.

In 2015 he retired and became professor emeritus of Theoretical Physics at Linköping University.

Bibliographic Information

Publish with us