Logo - springer
Slogan - springer

Birkhäuser - Birkhäuser Mathematics | Metrics on the Phase Space and Non-Selfadjoint Pseudo-Differential Operators

Metrics on the Phase Space and Non-Selfadjoint Pseudo-Differential Operators

Lerner, Nicolas

2010, xii, 397 p.

A product of Birkhäuser Basel
Available Formats:
eBook
Information

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.

 
$69.95

(net) price for USA

ISBN 978-3-7643-8510-1

digitally watermarked, no DRM

Included Format: PDF

download immediately after purchase


learn more about Springer eBooks

add to marked items

Softcover
Information

Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$89.95

(net) price for USA

ISBN 978-3-7643-8509-5

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

  • A thorough exposition of pseudodifferential calculus defined by metrics on the phase space
  • Contains a proof of the Nirenberg-Treves conjecture
  • Construction of counterexamples to "optimal" solvability under condition (psi)
This book is devoted to the study of pseudo-di?erential operators, with special emphasis on non-selfadjoint operators, a priori estimates and localization in the phase space. We have tried here to expose the most recent developments of the theory with its applications to local solvability and semi-classical estimates for non-selfadjoint operators. The?rstchapter,Basic Notions of Phase Space Analysis,isintroductoryand gives a presentation of very classical classes of pseudo-di?erential operators, along with some basic properties. As an illustration of the power of these methods, we give a proof of propagation of singularities for real-principal type operators (using aprioriestimates,andnotFourierintegraloperators),andweintroducethereader to local solvability problems. That chapter should be useful for a reader, say at the graduate level in analysis, eager to learn some basics on pseudo-di?erential operators. The second chapter, Metrics on the Phase Space begins with a review of symplectic algebra, Wigner functions, quantization formulas, metaplectic group and is intended to set the basic study of the phase space. We move forward to the more general setting of metrics on the phase space, following essentially the basic assumptions of L. H¨ ormander (Chapter 18 in the book [73]) on this topic.

Content Level » Research

Keywords » Derivative - calculus - differential equation - fourier integral operator - operator theory - ordinary differential equation - phase space - pseudo-differential operator

Related subjects » Birkhäuser Mathematics

Table of contents / Preface 

Popular Content within this publication 

 

Articles

Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Analysis.