Skip to main content
Birkhäuser

H(infinity)-Optimal Control and Related ...

  • Book
  • © 1991

Overview

Part of the book series: Systems & Control: Foundations & Applications (SCFA)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (10 chapters)

Keywords

About this book

One of the major concentrated activities of the past decade in control theory has been the development of the so-called "HOO-optimal control theory," which addresses the issue of worst-case controller design for linear plants subject to unknown additive disturbances, including problems of disturbance attenuation, model matching, and tracking. The mathematical OO symbol "H " stands for the Hardy space of all complex-valued functions of a complex variable, which are analytic and bounded in the open right­ half complex plane. For a linear (continuous-time, time-invariant) plant, oo the H norm of the transfer matrix is the maximum of its largest singular value over all frequencies. OO Controller design problems where the H norm plays an important role were initially formulated by George Zames in the early 1980's, in the context of sensitivity reduction in linear plants, with the design problem posed as a mathematical optimization problem using an (HOO) operator norm. Thus formulated originally in the frequency domain, the main tools used during the early phases of research on this class of problems have been operator and approximation theory, spectral factorization, and (Youla) parametrization, leading initially to rather complicated (high-dimensional) OO optimal or near-optimal (under the H norm) controllers.

Authors and Affiliations

  • Coordinated Science Laboratory, University of Illinois, Urbana, USA

    Tamer Başar

  • Inria, Unité de Recherche Sophia-Antipolis, Valbone Cedex, France

    Pierre Bernhard

Bibliographic Information

Publish with us