Handbook of Supernovae

- Presents a comprehensive, structured view of current knowledge in the broad field of supernovae
- Collates the latest research on supernovae from across many subdisciplines
- Serves as a starting point for all scholars interested in supernova study
- Includes contributions from nearly 120 of the most prominent supernova researchers

This reference work gathers all of the latest research in the supernova field areas to create a definitive source book on supernovae, their remnants and related topics. It includes each distinct subdiscipline, including stellar types, progenitors, stellar evolution, nucleosynthesis of elements, supernova types, neutron stars and pulsars, black holes, swept up interstellar matter, cosmic rays, neutrinos from supernovae, supernova observations in different wavelengths, interstellar molecules and dust. While there is a great deal of primary and specialist literature on supernovae, with a great many scientific groups around the world focusing on the phenomenon and related subdisciplines, nothing else presents an overall survey. This handbook closes that gap at last. As a comprehensive and balanced collection that presents the current state of knowledge in the broad field of supernovae, this is to be used as a basis for further work and study by graduate students, astronomers and astrophysicists working in close/related disciplines, and established groups. Editorial Board

EDITORS-IN-CHIEF
Athem W. Alsabti
University College London Observatory, University College London, London, UK

Sections:
- Supernovae and Supernova Remnants
- Supernovae and the Environment of the Solar System

Paul Murdin
Institute of Astronomy, University of Cambridge, Cambridge, UK

Section: Supernovae and Supernova Remnants

SECTION EDITORS
- David Arnett
Steward Observatory, University of Arizona, Tucson, AZ, USA
- Phil Charles
University of Southampton, School of Physics and Astronomy, Southampton, UK
- Robert A. Fesen
Department of Physics and Astronomy, Dartmouth College, Hanover, NH, USA
- Evolution of Supernovae and the Interstellar Medium
 David A.