Skip to main content
Book cover

New Computation Methods for Geometrical Optics

  • Book
  • © 2014

Overview

  • Employs homogeneous coordinate notation to compute the first-and second-order derivative matrices of various optical quantities
  • Written for researchers, designers and graduate students
  • Serves as an important mathematical tool for automatic optical design

Part of the book series: Springer Series in Optical Sciences (SSOS, volume 178)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (8 chapters)

Keywords

About this book

This book employs homogeneous coordinate notation to compute the first- and second-order derivative matrices of various optical quantities. It will be one of the important mathematical tools for automatic optical design. The traditional geometrical optics is based on raytracing only. It is very difficult, if possible, to compute the first- and second-order derivatives of a ray and optical path length with respect to system variables, since they are recursive functions. Consequently, current commercial software packages use a finite difference approximation methodology to estimate these derivatives for use in optical design and analysis. Furthermore, previous publications of geometrical optics use vector notation, which is comparatively awkward for computations for non-axially symmetrical systems.

Authors and Affiliations

  • Dept. of Mechanical Engineering, National Cheng Kung University, Tainan, Taiwan

    Psang Dain Lin

About the author

Dr. PD Lin is a distinguished Professor of Mechanical Engineering at the National Cheng Kung University, Taiwan, where he has been since 1989. He earned his BS and MS from that university in 1979 and 1984, respectively. He received his Ph.D. in Mechanical Engineering from Northwestern University, USA, in 1989. He has served as an associate editor of Journal of the Chinese Society of Mechanical Engineers since 2000. His research interests include geometrical optics and error analysis in multi-axis machines.

Bibliographic Information

Publish with us