Computational Methods in Engineering & the Sciences

Immersed Boundary Method

Development and Applications

Editors: Roy, Somnath, De, Ashoke, Balaras, Elias (Eds.)

Free Preview
  • Compilation of research advances in immersed boundary methods
  • Demonstrates applications of IB methods to a wide range of problems
  • Includes extensive referencing to relevant research
see more benefits

Buy this book

eBook $44.99
price for USA in USD
  • ISBN 978-981-15-3940-4
  • Digitally watermarked, DRM-free
  • Included format: EPUB, PDF
  • Immediate eBook download after purchase and usable on all devices
  • Bulk discounts available
Hardcover $59.99
price for USA in USD
About this book

This volume presents the emerging applications of immersed boundary (IB) methods in computational mechanics and complex CFD calculations. It discusses formulations of different IB implementations and also demonstrates applications of these methods in a wide range of problems. It will be of special value to researchers and engineers as well as graduate students working on immersed boundary methods, specifically on recent developments and applications. The book can also be used as a supplementary textbook in advanced courses in computational fluid dynamics.

About the authors

Somnath Roy is an Associate Professor at Indian Institute of Technology Kharagpur. Dr. Roy received his Masters’ degree in Mechanical Engineering from IIT Kanpur in 2004, and Ph.D. degree in Mechanical Engineering from Louisiana State University, USA in 2010. Before joining IIT Kharagpur, he worked as a research associate and visiting Assistant Professor at Louisiana State University, USA and as an Assistant Professor at Indian Institute of Technology Kharagpur. His research interest is turbulence, arterial flows, moving boundary flow simulation, high performance computing using cluster and GPGPUs. His primary area of work is computational fluid dynamics (CFD). He has hosted two GIAN programs on computational methods and has also offered online course (NPTEL) on matrix solvers. His group works on developing immersed boundary method (IBM) based computationally efficient algorithms to solve moving boundary problems and on utilizing these implementations to predict flow and heat transfer in engineering and biological applications.  Ashoke De is currently working as Associate Professor in the Department of Aerospace Engineering at Indian Institute of Technology Kanpur. Dr. De received his Masters’ degree in Aerospace Engineering from IIT Kanpur in 2004, and Ph.D. degree in Mechanical Engineering from Louisiana State University, USA in 2009. Before joining IIT Kanpur, he worked as a post-doctoral scholar at Technical University of Delft (TU-Delft), Netherlands and as Research Engineer in GE Global Research at Bangalore. He is the recipient of many awards and fellowships including the Humboldt Research fellowship (2018), DAAD Fellowship (2016) and GE Global Research’s Expertise Award (2010), among others. Dr. De leads large-scale initiatives in the modeling of turbulent reacting and non-reacting flows at IIT Kanpur. His current research interests include combustion modeling, hybrid RANS/LES model development, supersonic flows and Fluid-Structure interactions (FSI). His primary research focus is the emerging field of computational mechanics with particular interest in combustion and turbulent flows.Elias Balaras is a Professor at the Department of Mechanical and Aerospace Engineering at George Washington University. Prof. Balaras received his Ph.D. from the Swiss Federal Institute of Technology (EPFL) in Lausanne, Switzerland in 1995. He was formerly a visiting scientist at the National Institute for Standards and Technology and a faculty at the University of Maryland. Prof. Balaras's current research program aims at the development of robust numerical techniques for parallel, large-scale simulations of multiscale, multiphysics problems in physical and biological systems. Emphasis is given at large-eddy and direct numerical simulations, fluid-structure interactions and biological fluid dynamics. He has been the recipient of several awards including the Marie-Curie fellowship from the European Commission in 1994 and the career award from the National Science Foundation in 2003. He is currently an Associate Editor at the ASME J. Fluids Engineering and has served as a reviewer for numerous journals and government programs related to fluid mechanics, biological flows, high performance computing and turbulence.

Table of contents (16 chapters)

Table of contents (16 chapters)
  • Immersed Boundary Projection Methods

    Pages 3-43

    Dorschner, Benedikt (et al.)

  • Direct Lagrangian Forcing Methods Based on Moving Least Squares

    Pages 45-79

    Vanella, Marcos (et al.)

  • Mass Conservation in Sharp Interface Immersed Boundary Method—A GPGPU Accelerated Implementation

    Pages 81-106

    Kumar, Manish (et al.)

  • Coupling the Curvilinear Immersed Boundary Method with Rotation-Free Finite Elements for Simulating Fluid–Structure Interaction: Concepts and Applications

    Pages 107-138

    Gilmanov, Anvar (et al.)

  • Handling Slender/Thin Geometries with Sharp Edges in Sharp Interface Immersed Boundary Approach

    Pages 139-165

    Seshadri, Pradeep Kumar (et al.)

Buy this book

eBook $44.99
price for USA in USD
  • ISBN 978-981-15-3940-4
  • Digitally watermarked, DRM-free
  • Included format: EPUB, PDF
  • Immediate eBook download after purchase and usable on all devices
  • Bulk discounts available
Hardcover $59.99
price for USA in USD
Loading...

Recommended for you

Loading...

Bibliographic Information

Bibliographic Information
Book Title
Immersed Boundary Method
Book Subtitle
Development and Applications
Editors
  • Somnath Roy
  • Ashoke De
  • Elias Balaras
Series Title
Computational Methods in Engineering & the Sciences
Copyright
2020
Publisher
Springer Singapore
Copyright Holder
Springer Nature Singapore Pte Ltd.
eBook ISBN
978-981-15-3940-4
DOI
10.1007/978-981-15-3940-4
Hardcover ISBN
978-981-15-3939-8
Series ISSN
2662-4869
Edition Number
1
Number of Pages
XII, 442
Number of Illustrations
75 b/w illustrations, 185 illustrations in colour
Topics