Skip to main content

Angle-Resolved Photoemission Spectroscopy Studies of 2D Material Heterostructures

  • Book
  • © 2020

Overview

  • Nominated as an outstanding PhD thesis by Tsinghua University
  • Introduces a variety of two-dimensional material combinations
  • Presents three typical and important two-dimensional material heterostructures
  • Provides the first direct results on modulated band structure in topological insulator/high-Tc superconductors and graphene/h-BN heterostructures

Part of the book series: Springer Theses (Springer Theses)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (6 chapters)

Keywords

About this book

This book focuses on angle-resolved photoemission spectroscopy studies on novel interfacial phenomena in three typical two-dimensional material heterostructures: graphene/h-BN, twisted bilayer graphene, and topological insulator/high-temperature superconductors. Since the discovery of graphene, two-dimensional materials have proven to be quite a large “family”. As an alternative to searching for other family members with distinct properties, the combination of two-dimensional (2D) materials to construct heterostructures offers a new platform for achieving new quantum phenomena, exploring new physics, and designing new quantum devices. By stacking different 2D materials together and utilizing interfacial periodical potential and order-parameter coupling, the resulting heterostructure’s electronic properties can be tuned to achieve novel properties distinct from those of its constituent materials. This book offers a valuable reference guide for all researchers and students working in thearea of condensed matter physics and materials science.

Authors and Affiliations

  • Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, Germany

    Eryin Wang

About the author

Eryin Wang received his PHD in physics from Tsinghua University. During PHD, he utilized angle-resolved photoemission spectroscopy (ARPES) and nanospot ARPES to study the novel interfacial phenomena in 2D material heterostructures, including Bi2Se3/BSCCO and Graphene/h-BN. Now he is working in Max Planck Institute for the Structure and Dynamics of Matter as a receiver of Humboldt Research Fellowship. Currently, he is combining ultrafast transport and molecular beam epitaxy techniques to investigate the light-induced superconductivity in organic superconductor. 

Bibliographic Information

Publish with us