Skip to main content

Renormalization Group Analysis of Nonequilibrium Phase Transitions in Driven Disordered Systems

  • Book
  • © 2019

Overview

  • Nominated as an outstanding PhD thesis by the Department of Physics at Kyoto University
  • Presents for the first time a novel type of topological phase transition in disordered systems
  • Explores the development of a renormalization group technique for driven disordered systems

Part of the book series: Springer Theses (Springer Theses)

  • 2244 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (6 chapters)

Keywords

About this book

This book investigates phase transitions and critical phenomena in disordered systems driven out of equilibrium. First, the author derives a dimensional reduction property that relates the long-distance physics of driven disordered systems to that of lower dimensional pure systems. By combining this property with a modern renormalization group technique, the critical behavior of random field spin models driven at a uniform velocity is subsequently investigated. The highlight of this book is that the driven random field XY model is shown to exhibit the Kosterlitz–Thouless transition in three dimensions. This is the first example of topological phase transitions in which the competition between quenched disorder and nonequilibrium driving plays a crucial role. The book also includes a pedagogical review of a renormalizaion group technique for disordered systems. 

Authors and Affiliations

  • Department of Physics, Kyoto University, Kyoto, Japan

    Taiki Haga

About the author

Taiki Haga is a researcher at the Department of Physics, Kyoto University with a primary focus on non-equilibrium statistical mechanics. He received his Bachelor of Science from Tohoku University in 2013, and his Master and Doctor of Science from Kyoto University in 2015 and 2018, respectively. He was awarded a Research Fellowship for Young Scientists (DC1) by the Japan Society for the Promotion of Science (JSPS) and his research was supported by the JSPS from 2015 to 2018.

Bibliographic Information

Publish with us