Skip to main content
Book cover

A Polymer Cochlear Electrode Array: Atraumatic Deep Insertion, Tripolar Stimulation, and Long-Term Reliability

  • Book
  • © 2018

Overview

  • Nominated as an outstanding PhD Thesis by the Department of Electrical and Computer Engineering, Seoul National University, Korea
  • Addresses three key topics pertaining to polymer-based neural implants: atraumatic deep insertion, tripolar stimulation, and long-term reliability
  • Describes the design, fabrication, and evaluation of LCP-based cochlear electrode array for an improved polymer-based cochlear implant

Part of the book series: Springer Theses (Springer Theses)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (5 chapters)

Keywords

About this book

This book describes the design, fabrication and evaluation of a polymer-based neural interface for a cochlear electrode array, reviewed in terms of fabrication process, functionality, and reliability. Polymer-based devices have attracted attention in the neural prosthetic field due to their flexibility and compatibility with micro-fabrication process. A liquid crystal polymer (LCP) is an inert, highly water-resistant polymer suitable for the encapsulation of electronic components and as a substrate material for fabricating neural interfaces. The author has designed, fabricated, and evaluated an LCP-based cochlear electrode array for an improved polymer-based cochlear implant. The thesis deals with 3 key topics: atraumatic deep insertion, tripolar stimulation, and long-term reliability. Atraumatic insertion of the intracochlear electrode and resulting preservation of residual hearing have become essential in state–of-the-art cochlear implantation. A novel tapered design of anLCP-based cochlear electrode array is presented to meet such goals. For high-density and pitch-recognizable cochlear implant, channel interaction should be avoided. Local tripolar stimulation using multi-layered electrode sites are shown to achieve highly focused electrical stimulation. This thesis addresses another vital issue in the polymer-based neural implants: the long-term reliability issue. After suggesting a new method of forming mechanical interlocking to improve polymer-metal adhesion, the author performs accelerating aging tests to verify the method’s efficacy. The aforementioned three topics have been thoroughly examined through various in vitro and in vivo studies. Verification foresees the development of LCP-based cochlear electrode array for an atraumatic deep insertion, advanced stimulation, and long-term clinical implant.

Authors and Affiliations

  • Department of Electrical and Computer Engineering, Seoul National University, Seoul, Korea (Republic of)

    Tae Mok Gwon

About the author

Dr. Tae Mok Gwon was a member of the NanoBio-electronics & Systems Laboratory, Department of Electrical and Computer Engineering, Seoul National University, Korea. He is currently a Senior engineer at Semiconductor R&D center, Samsung Electronics Co., Ltd..

Bibliographic Information

Publish with us