Skip to main content
Book cover

Manipulation of Near Field Propagation and Far Field Radiation of Surface Plasmon Polariton

  • Book
  • © 2017

Overview

  • Nominated as an outstanding thesis by Nanjing University
  • Provides an entirely new phase modulation method using non-perfectly matched, Bragg diffraction to manipulate the surface plasmon waves
  • Demonstrates a well-routed polarization generator by achieving simultaneous control of light polarization and phase by means of plasmonic near-field interference
  • Includes supplementary material: sn.pub/extras
  • Includes supplementary material: sn.pub/extras

Part of the book series: Springer Theses (Springer Theses)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (6 chapters)

Keywords

About this book

This book mainly focuses on the study of steering electromagnetic fields in near-field and far-field contexts involving plasmonic structures. It also offers a new approach to achieving full control of optical polarizations and potentially boosting the development in photonic information processing. A new in-plane phase modulation method is proposed and described, by means of which a series of optical beams were realized with nanostructures in metal surfaces, such as a plasmonic Airy beam, broad band focusing beam, and demultiplexing, collimated beam, as well as an optical orbital angular momentum (OAM) beam. Further, the book presents a plasmonic polarization generator, which can reconfigure an input polarization to all kinds of states simultaneously.

Authors and Affiliations

  • School of Physics, Nanjing University, Nanjing, China

    Lin Li

About the author

Lin Li completed his B. Sc. in physics at Wuhan University, China in 2005, and received his Ph.D. in physics from the School of Physics of Nanjing University in June 2014. His major research project in Prof. Shining Zhu’s group was on the physics and potential applications of plasmonics. Subsequently, he became a post-doc fellow working with Prof. Xiang Zhang at the Department of Mechanical Engineering, University of California, Berkeley, focusing on optical meta surface and super-resolution imaging.

Bibliographic Information

Publish with us