Skip to main content
Book cover

Handbook of Glycosyltransferases and Related Genes

  • Reference work
  • © 2014

Overview

  • Provides comprehensive information on all known glycosyltransferases and their related genes

  • Written by leading experts in the field

  • New edition, available both in print and as a fully searchable and hyperlinked electronic online edition

  • Includes supplementary material: sn.pub/extras

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (151 entries)

  1. Glucosyltransferases

  2. Galactosyltransferases

  3. Mannosyltransferases

About this book

This handbook, now in a new, second edition, is an essential resource for scientists with an interest in the role of glycosyltransferases and related genes involved in the biosynthesis of glycoproteins, glycolipids, and proteoglycans.

The first edition of the Handbook of Glycosyltransferases and Related Genes, published in 2002, contained descriptions of more than 100 mammalian genes by over 100 scientists who originally isolated and/or cloned these genes. Since then, there has been a growing body of evidence concerning the roles of glycosyltransferases, and additional glycosyltransferases have been identified. Now more than 200 glycosyltransferases have been isolated from mammalian tissue, corresponding to approximately 1–2% of the total human genome. Some have been found to be involved in development and reproduction, signal transduction, cell death, higher nervous functioning, immunity, and other important biological processes. Glycosyltransferases have also been implicated in the development of lifestyle diseases such as diabetes, cancer, chronic obstructive lung disease (COPD), neuromuscular diseases, and infectious diseases.

A functional glycomics approach using gene targeting in mice and analytical methods utilizing glycan arrays, lectin arrays, HPLC, and mass spectrometry identified the target glycoprotein(s) on which glycans are attached by the catalytic reaction of glycosyltransferases. Most of the target proteins have been shown to be cell surface membrane proteins such as growth factor receptors and transporters. The three-dimensional structures of some glycosyltransferases have also been characterized, making it possible to classify them into retaining and inverting enzymes. Such structural information is also included in this invaluable new edition.

Editors and Affiliations

  • RIKEN-Max-Planck Joint Research Center for Systems Chemical Biology, RIKEN, Wako, Japan

    Naoyuki Taniguchi, Yoshiki Yamaguchi

  • Department of Biochemistry, Kochi University, Medical School, Nankoku, Japan

    Koichi Honke

  • Sanford Burnham Medical Research Institute, La Jolla, USA

    Minoru Fukuda

  • Research Center for Medical Glycoscience (RCMG), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan

    Hisashi Narimatsu

  • Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan

    Takashi Angata

About the editors

Naoyuki Taniguchi graduated from the Faculty of Medicine, Hokkaido University, and obtained his M.D. degree in 1967 and then his Ph.D. from the same university in 1972. He became an assistant professor in the Department of Preventive Medicine, Hokkaido University, and a visiting associate professor at the Cornell University Medical School, New York, in 1976. After returning to Japan, he became an associate professor at the Cancer Institute, Hokkaido University Medical School. In 1986 he became professor and chair of the Department of Biochemistry, Osaka University Medical School. After retirement from the medical school in 2006, he became an endowed chair professor at Osaka University. In the meantime, he launched the Systems Glycobiology Research Group at RIKEN, Advanced Science Institute (the former Frontier Science Program), in 2007, and since that time he has been the group director. He is focusing on the structure and function of glycans, especially the role of N-linked glycoproteins in relation to the mechanism of disease, biomarker discovery and therapeutics.

Dr. Taniguchi has published more than 500 papers in peer-reviewed journals and has served as chief editor for the Journal of Biochemistry. He has been an editorial board member for many journals such as Biochemical and Biophysical Research Communications , The Journal of Biological Chemistry, Proteomics, Glycobiology, and Glycoconjugate Journal, among others.

He received the International Glycoconjugate Organization (IGO) Award in 2001, the Medal with Purple Ribbon in 2005, the IUBMB Medal in 2009, the HUPO Distinguished Service Award in 2010, and the Japan Academy Award in 2011. Dr. Taniguchi is now the president of the Japan Consortium for Glycobiology and Glycotechnology and will become the president of the Society for Glycobiology in 2014.

 

Koichi Honke graduated from the Faculty of Medicine, Hokkaido University School, obtaining his M.D. there in 1983. Since he began his research at the Cancer Institute of the Hokkaido University Medical School in 1984 he has been studying the metabolism and function of glycolipids as well as glycoproteins. He worked at the Osaka Medical Center for Maternal and Child Health as chief researcher from 1995 to 1999 and in the Department of Biochemistry, Osaka University Medical School, as associate professor from 1999 to 2003. He was then promoted to full professor at the Kochi University Medical School in 2003. His major contribution has been purification, molecular cloning, and gene targeting of a glycan sulfotransferase responsible for the biosynthesis of sulfatides and discovery of the Gal 3-O-sulfotransferase gene family. His research focus now has shifted to the biogenesis of membrane microdomains with the establishment of a novel labeling method called EMARS for identification of cell surface molecular clustering in living cells.

Minoru Fukuda is a professor at the Sanford-Burnham Medical Research Institute in La Jolla, California, and an adjunct professor in the Department of Pathology at the University of California, San Diego. Dr. Fukuda earned his Ph.D. in biochemistry from the University of Tokyo in 1973 and completed post-doctoral research training at the Yale University School of Medicine. He was an assistant professor at the University of Washington and the Fred Hutchinson Cancer Research Center in Seattle, Washington, working with Dr. Senichiro Hakomori, before he was recruited to the Burnham Institute as director of the glycobiology program in 1984. In 1994–1995, Dr. Fukuda was also the biochemistry chair of the Institute of Medical Science, the University of Tokyo. Dr. Fukuda has published more than 280 original scientific papers, authored and edited many books, and served as executive editor and associate editor for Biochimica et Biophysica Acta (BBA) and Cancer Research, respectively. Dr. Fukuda received the Karl Meyer Award given by the Society for Glycobiology, The Mizutani Award, MERIT Award and Program Project Grant, and recently, the Alliance of Glycobiologists for Detection of Cancer from the National Cancer Institute, National Institutes of Health (NIH). His research focus is on the structure, biosynthesis, and function of glycoproteins. He is particularly interested in the tumor suppresser function of carbohydrates and heparan sulfate for cellular signals in cell–cell interaction.

Hisashi Narimatsu is a founder and the director of the Research Center of Medical Glycoscience (RCMG), a part of the National Institute of Advanced Industrial Science and Technology (AIST) in Japan, and is energetically leading comprehensive activities in glycoscience. He graduated from the School of Medicine and the Graduate School of Medicine at Keio University, where he received his M.D. and Ph.D., respectively. He successfully cloned the first glycosyltransferase, 1,4-galactosyltransferase, during his postdoc at the U.S. National Institutes of Health (NIH), and thereafter he has continued to devote his scientific career to finding and cloning many new glycosyltransferases. In 2000, he joined AIST and since then has been leading three national projects, i.e., the Glycogene Project, the Structural Glycomics Project, and the Medical Glycomics Project, to facilitate the progress of glycoscience.

 

Yoshiki Yamaguchi received his Ph.D. in 1998 at the Graduate School of Pharmaceutical Sciences, the University of Tokyo (under Professors Ichio Shimada and Yoji Arata). He continued his research as a postdoctoral research fellow and then as a research associate in the same group. From 2001 to 2007, he was a lecturer at Nagoya City University (under Professor Koichi Kato) and then moved to his current position at RIKEN, the Systems Glycobiology Research Group, as a team leader of the Structural Glycobiology Team. His current study focuses on structural analyses of glycoproteins and glycan-related proteins. He has been holding posts concurrently at Nagoya City University (from 2007) and at Tokyo Medical and Dental University (from 2008) as a visiting professor. He received Young Scientist Awards from GlycoTOKYO in 2006 and from the Japanese Society of Carbohydrate Research in 2007.

Takashi Angata received a Ph.D. degree in biochemistry from the Graduate School of Science, the University of Tokyo, in 1998. He has served as post-doctoral fellow to Professor Ajit Varki at the University of California, San Diego (1998–2003), research scientist at the National Institute of Advanced Industrial Science and Technology (AIST) in Japan (2003–2009), specially appointed associate professor at Osaka University (2009–2011), and now as team leader at the RIKEN Advanced Science Institute (2011–present).

Dr. Angata was a major contributor in the expansion of the Siglec family of sialic acid recognition proteins and made several seminal discoveries in the field, such as the concerted evolution of activating and inhibitory Siglecs as paired receptors. His current research is focused on the role of activating Siglecs in innate immunity and chronic diseases.

Bibliographic Information

Publish with us