Skip to main content
Book cover

Logic and Games on Automatic Structures

Playing with Quantifiers and Decompositions

  • Book
  • © 2011

Overview

  • Innovative study in the area of algorithmic model theory
  • Based on awarded dissertation
  • State-of-the-art research

Part of the book series: Lecture Notes in Computer Science (LNCS, volume 6810)

Part of the book sub series: Lecture Notes in Artificial Intelligence (LNAI)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (8 chapters)

Keywords

About this book

The evaluation of a logical formula can be viewed as a game played by two opponents, one trying to show that the formula is true and the other trying to prove it is false. This correspondence has been known for a very long time and has inspired numerous research directions. In this book, the author extends this connection between logic and games to the class of automatic structures, where relations are recognized by synchronous finite automata.

In model-checking games for automatic structures, two coalitions play against each other with a particular kind of hierarchical imperfect information. The investigation of such games leads to the introduction of a game quantifier on automatic structures, which connects alternating automata with the classical model-theoretic notion of a game quantifier. This study is then extended, determining the memory needed for strategies in infinitary games on the one hand, and characterizing regularity-preserving Lindström quantifiers on the other. Counting quantifiers are investigated in depth: it is shown that all countable omega-automatic structures are in fact finite-word automatic and that the infinity and uncountability set quantifiers are definable in MSO over countable linear orders and over labeled binary trees.

This book is based on the PhD thesis of Lukasz Kaiser, which was awarded with the E.W. Beth award for outstanding dissertations in the fields of logic, language, and information in 2009. The work constitutes an innovative study in the area of algorithmic model theory, demonstrating the deep interplay between logic and computability in automatic structures. It displays very high technical and presentational quality and originality, advances significantly the field of algorithmic model theory and raises interesting new questions, thus emerging as a fruitful and inspiring source for future research.

Authors and Affiliations

  • LIAFA (CNRS), Université Paris Diderot - Paris 7, France

    Łukasz Kaiser

Bibliographic Information

Publish with us