Skip to main content
  • Book
  • © 2011

Entanglement Between Noncomplementary Parts of Many-Body Systems

  • Nominated as an outstanding contribution by University College London
  • Treats two of the major challenges of modern physics: Entanglement and emergent properties (phase transitions)
  • Provides an excellent theoretical basis for future research

Part of the book series: Springer Theses (Springer Theses)

  • 3226 Accesses

Buy it now

Buying options

eBook USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

This is a preview of subscription content, log in via an institution to check for access.

Table of contents (6 chapters)

  1. Front Matter

    Pages i-xi
  2. Introduction

    • Hannu Christian Wichterich
    Pages 1-14
  3. Conclusions and Outlook

    • Hannu Christian Wichterich
    Pages 81-82
  4. Back Matter

    Pages 83-113

About this book

This thesis investigates the structure and behaviour of entanglement, the purely quantum mechanical part of correlations, in many-body systems, employing both numerical and analytical techniques at the interface of condensed matter theory and quantum information theory. Entanglement can be seen as a precious resource which, for example, enables the noiseless and instant transmission of quantum information, provided the communicating parties share a sufficient "amount" of it. Furthermore, measures of entanglement of a quantum mechanical state are perceived as useful probes of collective properties of many-body systems. For instance, certain measures are capable of detecting and classifying ground-state phases and, particularly, transition (or critical) points separating such phases. Chapters 2 and 3 focus on entanglement in many-body systems and its use as a potential resource for communication protocols. They address the questions of how a substantial amount of entanglement can be established between distant subsystems, and how efficiently this entanglement could be "harvested" by way of measurements. The subsequent chapters 4 and 5 are devoted to universality of entanglement between large collections of particles undergoing a quantum phase transition, where, despite the enormous complexity of these systems, collective properties including entanglement no longer depend crucially on the microscopic details.

Reviews

From the reviews:

“The theses brings new and very interesting knowledge on the quantum information field. … this thesis gives a new insight of entanglement between noncomplementary regious of many-body systems, with interesting discussions and well carried out mathematical models.” (Nicolae Constantinescu, Zentralblatt MATH, Vol. 1222, 2011)

Authors and Affiliations

  • , Department of Physics and Astronomy, University College London, London, United Kingdom

    Hannu Christian Wichterich

Bibliographic Information

Buy it now

Buying options

eBook USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access