Springer Tracts in Advanced Robotics

Virtual Decomposition Control

Toward Hyper Degrees of Freedom Robots

Authors: Zhu, Wen-Hong

Free Preview
  • The most complete book on virtual decomposition control

Buy this book

eBook $149.00
price for USA in USD (gross)
  • ISBN 978-3-642-10724-5
  • Digitally watermarked, DRM-free
  • Included format: PDF
  • ebooks can be used on all reading devices
  • Immediate eBook download after purchase
Hardcover $249.99
price for USA in USD
  • ISBN 978-3-642-10723-8
  • Free shipping for individuals worldwide
  • Usually dispatched within 3 to 5 business days.
Softcover $199.99
price for USA in USD
  • ISBN 978-3-642-26298-2
  • Free shipping for individuals worldwide
  • Usually dispatched within 3 to 5 business days.
About this book

Driven by the need to achieve superior control performances for robots with hyper degrees of freedom, the virtual decomposition control approach is thoroughly presented in this book. This approach uses subsystem (such as links and joints of a complex robot) dynamics to conduct control design, while guaranteeing the stability and convergence of the entire complex robot without compromising the rigorousness of the system analysis.

The central concept of this approach is the definition of the virtual stability. The stability of the entire complex robot is mathematically equivalent to the virtual stability of every subsystem. This fact allows us to convert a large problem to a few simple problems with mathematical certainty.

This book comprises fourteen chapters. The first five chapters form the foundation of this approach. The remaining nine chapters are relatively independent. Starting from Chapter 6, each chapter deals with a particular type of systems including motor/transmission assemblies, hydraulic robots, coordinated multiple robots, space robots, humanoid robots, adaptive teleoperation, and modular robot manipulators. At the end, the extensions of this approach to distributed-parameter systems and to electrical circuits are given, paving the way for other applications to follow.

This book is intended for practitioners, researchers, and graduate students who have acquired fundamental knowledge on robotics and control systems and have been committed to achieving the best control performances on complex robotics systems and beyond.

Reviews

From the reviews:

“This book discusses for the first time about subsystem-based control of robots without compromising control performances, the proposed VDC approach using subsystems dynamics to conduct control computation while rigorously guaranteeing the stability of the entire robot without imposing additional approximations. … a very interesting monograph introducing the new theory of Virtual Decomposition Control (VDC), and applying it fruitfully to the control of various types of robots.” (Silvia Curteanu, Zentralblatt MATH, Vol. 1239, 2012)

Table of contents (14 chapters)

Table of contents (14 chapters)

Buy this book

eBook $149.00
price for USA in USD (gross)
  • ISBN 978-3-642-10724-5
  • Digitally watermarked, DRM-free
  • Included format: PDF
  • ebooks can be used on all reading devices
  • Immediate eBook download after purchase
Hardcover $249.99
price for USA in USD
  • ISBN 978-3-642-10723-8
  • Free shipping for individuals worldwide
  • Usually dispatched within 3 to 5 business days.
Softcover $199.99
price for USA in USD
  • ISBN 978-3-642-26298-2
  • Free shipping for individuals worldwide
  • Usually dispatched within 3 to 5 business days.
Loading...

Recommended for you

Loading...

Bibliographic Information

Bibliographic Information
Book Title
Virtual Decomposition Control
Book Subtitle
Toward Hyper Degrees of Freedom Robots
Authors
Series Title
Springer Tracts in Advanced Robotics
Series Volume
60
Copyright
2010
Publisher
Springer-Verlag Berlin Heidelberg
Copyright Holder
Springer-Verlag Berlin Heidelberg
eBook ISBN
978-3-642-10724-5
DOI
10.1007/978-3-642-10724-5
Hardcover ISBN
978-3-642-10723-8
Softcover ISBN
978-3-642-26298-2
Series ISSN
1610-7438
Edition Number
1
Number of Pages
XXV, 448
Number of Illustrations
43 b/w illustrations
Topics