Skip to main content
Book cover

Ubiquitous Quantum Structure

From Psychology to Finance

  • Book
  • © 2010

Overview

  • Expounds a new "quantum-inspired" approach to mathematical modeling

  • Draws attention to structural similarities in diverse fields

  • Rich source of ideas for further study

  • Includes supplementary material: sn.pub/extras

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (12 chapters)

Keywords

About this book

Quantum-like structure is present practically everywhere. Quantum-like (QL) models, i.e. models based on the mathematical formalism of quantum mechanics and its generalizations can be successfully applied to cognitive science, psychology, genetics, economics, finances, and game theory.

This book is not about quantum mechanics as a physical theory. The short review of quantum postulates is therefore mainly of historical value: quantum mechanics is just the first example of the successful application of non-Kolmogorov probabilities, the first step towards a contextual probabilistic description of natural, biological, psychological, social, economical or financial phenomena. A general contextual probabilistic model (Växjö model) is presented. It can be used for describing probabilities in both quantum and classical (statistical) mechanics as well as in the above mentioned phenomena. This model can be represented in a quantum-like way, namely, in complex and more general Hilbert spaces. In this way quantum probability is totally demystified: Born's representation of quantum probabilities by complex probability amplitudes, wave functions, is simply a special representation of this type.

Authors and Affiliations

  • International Center for Mathematical, Modeling in Physics and Cognitive Scienc, University of Växjö, Växjö, Sweden

    Andrei Y. Khrennikov

About the author

Professor Khrennikov works actively in quantum foundations concentrating his research on such fundamental problems as inter-relation of quantum and classical probability, quantum nonlocality, Bell’s inequality, interference of probabilities. He was one of the first in the world who started to apply quantum mathematics outside physics – in psychology, cognitive science, genetics, economy and finances. He published about 300 papers in the most prestigious journals in physics, mathematics, biology, psychology, finances, cognitive science. He is the author of 11 monographs on foundations of probability, quantum physics, p-adic and non-Archimedean analysis and their applications. Since 2001, Prof. Khrennikov is the director of The International Center for Mathematical Modeling in Physics and Cognitive Science, University of Vaxjo Sweden. This center has already organized 10 conferences on foundations of probability and quantum physics, workshops on quantum psychology and quantum finances.

Bibliographic Information

Publish with us