Biologically-Inspired Optimisation Methods
Parallel Algorithms, Systems and Applications
Editors: Lewis, Andrew, Mostaghim, Sanaz, Randall, Marcus (Eds.)
Free Preview- Presents recent research in Biologically-inspired Optimisation Methods
Buy this book
- About this book
-
Humanity has often turned to Nature for inspiration to help it solve its problems. The systems She provides are often based on simple rules and premises, yet are able to adapt to new and complex environments quickly and efficiently. Problems from a range of human endeavours, including, science, engineering and economics, require us to find good quality solutions in exponentially large search spaces, a task that often requires vast amounts computational resources and effort. In this book, the contributing authors solve these problems by modelling aspects of the natural world, from the flocking of birds and fish, the operation of colonies of ants through to chromosome reproduction and beyond. Many of the contributions represent extended studies of work presented at a number of workshops on Biologically-Inspired Optimisation Methods at international conferences on e-Science, Grid Computing, and Evolutionary Computation. A variety of chapters from some of the leading experts in the field present an overview of the state-of-the-art, recent advances in theoretical and practical ideas and techniques, and details of application of these methods to a range of benchmark and real world problems.
- Table of contents (12 chapters)
-
-
Evolution’s Niche in Multi-Criterion Problem Solving
Pages 1-21
-
Applications of Parallel Platforms and Models in Evolutionary Multi-Objective Optimization
Pages 23-49
-
Asynchronous Multi-Objective Optimisation in Unreliable Distributed Environments
Pages 51-78
-
Dynamic Problems and Nature Inspired Meta-heuristics
Pages 79-109
-
Relaxation Labelling Using Distributed Neural Networks
Pages 111-138
-
Table of contents (12 chapters)
Recommended for you

Bibliographic Information
- Bibliographic Information
-
- Book Title
- Biologically-Inspired Optimisation Methods
- Book Subtitle
- Parallel Algorithms, Systems and Applications
- Editors
-
- Andrew Lewis
- Sanaz Mostaghim
- Marcus Randall
- Series Title
- Studies in Computational Intelligence
- Series Volume
- 210
- Copyright
- 2009
- Publisher
- Springer-Verlag Berlin Heidelberg
- Copyright Holder
- Springer-Verlag Berlin Heidelberg
- eBook ISBN
- 978-3-642-01262-4
- DOI
- 10.1007/978-3-642-01262-4
- Hardcover ISBN
- 978-3-642-01261-7
- Softcover ISBN
- 978-3-642-10177-9
- Series ISSN
- 1860-949X
- Edition Number
- 1
- Number of Pages
- XII, 360
- Topics