Skip to main content
Book cover

Principles and Applications of Aggregation-Induced Emission

  • Book
  • © 2019

Overview

  • Provides an authoritative account of the fundamentals, properties, and potential of AIE by the pioneer of this active, highly-researched field
  • Highlights technological applications of AIE spanning biomedicine, sensor materials, and optoelectronics, among others
  • Presents a comprehensive view on challenges in the further development of AIE and derived technologies

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (21 chapters)

Keywords

About this book

This book explores the aggregation-induced emission (AIE) effect, which has opened new avenues for the development of advanced luminogenic materials in the aggregate or solid state. By enabling light emission in the practically useful solid state, AIE has the potential to significantly expand the technological applications of luminescent materials. This book addresses principles, methods, and applications of AIEs, offering a new platform for the investigation of light-emitting processes from luminogen aggregates. Applications of AIE include biomedical diagnostics, sensor materials, and optoelectronic devices, among others, and are described in detail within the book. The development of a new generation of AIEgens, a deep understanding of the AIE mechanism(s), and the exploration of advanced technological applications will enable this exciting field to develop further. Headed by the pioneering researcher who started the field, Professor Ben Zhong Tang, this book combines both principles and applications and brings together global researchers in the field to report the progress, current challenges, and potential breakthroughs that may be accomplished in the near future.

  • Provides an authoritative account of the fundamentals, properties, and potential of AIE by the pioneer of this active, highly-researched field;
  • Highlights technological applications of AIE spanning biomedicine, sensor materials, and optoelectronics, among others;
  • Presents a comprehensive view on challenges in the further development of AIE and derived technologies.

Editors and Affiliations

  • Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, Australia

    Youhong Tang

  • State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou, China

    Ben Zhong Tang

About the editors

Youhong Tang is an Associate Professor and was an Australian Research Council-Discovery Early Career Researcher Award (ARC-DECRA) recipient at Flinders University. He is a research leader in the Flinders Institute for NanoScale Science and Technology. Dr Tang obtained his PhD degree at the Hong Kong University of Science and Technology in 2007. He moved to Flinders University from the University of Sydney in 2012. He is a materials science and engineering researcher with interests mainly focused on structure-process-property relation of polymeric materials and nanocomposites, bioresources, biomaterials and biosensors incorporating novel aggregation-induced emission material. In the last 5 years, he has published more than 120 SCI journal papers that have been cited more than 3,900 times, and his Hirsch index is 30. He has served as a referee for over 60 SCI journals. 

Ben Zhong Tang is Stephen K. C. Cheong Professor of Science and Chair/Professor of Chemistry and Biomedical Engineering at The Hong Kong University of Science and Technology.  His research interests include macromolecular chemistry, materials science, and biomedical theranostics.  He is spearheading the research on aggregation-induced emission (AIE), a topic ranked no. 2 in the areas of Chemistry and Materials Science by Thomson Reuters in its report on Research Fronts 2015. Professor Tang received the B.S. and Ph.D. degrees from South China University of Technology and Kyoto University, respectively.  He conducted postdoctoral research at the University of Toronto.  He joined HKUST as an assistant professor in 1994 and was promoted to chair professor in 2008.  He has been elected to the Chinese Academy of Sciences (CAS) and the Royal Society of Chemistry (RSC). Having published more than 900 papers, his publications have been cited more than 40,000 times, with an h-index of 102, he has been listed by Thomson Reuters as a Highly Cited Researcher in both areas of Chemistry and Materials Science.  He received a Senior Research Fellowship from the Croucher Foundation in 2007, Scientific and Technological Progress Award from the Ho Leung Ho Lee Foundation and the first prize in Natural Science Award from the Chinese Government in 2017.  He also got generous supporting from the National Natural Science Foundation of China to establish Centre for Luminescence for Molecular Aggregates in South China University of Technology in 2017. He is now serving as Editor-in-Chief of Materials Chemistry Frontiers.

Bibliographic Information

Publish with us