Skip to main content
  • Book
  • © 2018

The Leaf: A Platform for Performing Photosynthesis

  • Explores the central role that plants’ solar panels play in generating energized electrons and carbon building blocks that support the metabolic processes and growth of leaves, plants, as well as that of nearly all life
  • Illuminates the importance of leaves to plants, plant-atmosphere interactions, and human civilization
  • Brings together the contributions of over sixty researchers who document the evolution, varied structure, and functions of the different cells and tissues that comprise the plant organ (leaf) optimized for converting energy harvested from sunlight into food
  • Includes supplementary material: sn.pub/extras

Part of the book series: Advances in Photosynthesis and Respiration (AIPH, volume 44)

Buy it now

Buying options

eBook USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

This is a preview of subscription content, log in via an institution to check for access.

Table of contents (18 chapters)

  1. Front Matter

    Pages i-li
  2. Leaf Vasculature and the Upper Limit of Photosynthesis

    • William W. Adams III, Jared J. Stewart, Stephanie K. Polutchko, Barbara Demmig-Adams
    Pages 27-54
  3. Export of Photosynthates from the Leaf

    • Brian G. Ayre, Robert Turgeon
    Pages 55-79
  4. Leaf Anatomy and Function

    • Riichi Oguchi, Yusuke Onoda, Ichiro Terashima, Danny Tholen
    Pages 97-139
  5. Coordination Between Photosynthesis and Stomatal Behavior

    • Tracy Lawson, Ichiro Terashima, Takashi Fujita, Yin Wang
    Pages 141-161
  6. CO2 Diffusion Inside Photosynthetic Organs

    • Jaume Flexas, Francisco Javier Cano, Marc CarriquĂ­, Rafael E. Coopman, Yusuke Mizokami, Danny Tholen et al.
    Pages 163-208
  7. Molecular Mechanisms Affecting Cell Wall Properties and Leaf Architecture

    • Sarathi M. Weraduwage, Marcelo L. Campos, Yuki Yoshida, Ian T. Major, Yong-Sig Kim, Sang-Jin Kim et al.
    Pages 209-253
  8. Significance of C4 Leaf Structure at the Tissue and Cellular Levels

    • Mitsutaka Taniguchi, Asaph B. Cousins
    Pages 255-279
  9. Functional Anatomical Traits of the Photosynthetic Organs of Plants with Crassulacean Acid Metabolism

    • Anne M. Borland, Alistair Leverett, Natalia Hurtado-Castano, Rongbin Hu, Xiaohan Yang
    Pages 281-305
  10. Photosynthesis in Poor Nutrient Soils, in Compacted Soils, and under Drought

    • FermĂ­n Morales, Andrej PavloviÄŤ, AnunciaciĂłn AbadĂ­a, Javier AbadĂ­a
    Pages 371-399
  11. Photosynthetic and Photosynthesis-Related Responses of Japanese Native Trees to CO2: Results from Phytotrons, Open-Top Chambers, Natural CO2 Springs, and Free-Air CO2 Enrichment

    • Takayoshi Koike, Mitsutoshi Kitao, Kouki Hikosaka, Evgenios Agathokleous, Yoko Watanabe, Makoto Watanabe et al.
    Pages 425-449
  12. Leaf Photosynthesis Integrated over Time

    • Kihachiro Kikuzawa, Martin J. Lechowicz
    Pages 473-492
  13. Photosynthetic Modulation in Response to Plant Activity and Environment

    • William W. Adams III, Jared J. Stewart, Barbara Demmig-Adams
    Pages 493-563
  14. Back Matter

    Pages 565-575

About this book

The leaf is an organ optimized for capturing sunlight and safely using that energy through the process of photosynthesis to drive the productivity of the plant and, through the position of plants as primary producers, that of Earth’s biosphere. It is an exquisite organ composed of multiple tissues, each with unique functions, working synergistically to: (1) deliver water, nutrients, signals, and sometimes energy-rich carbon compounds throughout the leaf (xylem); (2) deliver energy-rich carbon molecules and signals within the leaf during its development and then from the leaf to the plant once the leaf has matured (phloem); (3) regulate exchange of gasses between the leaf and the atmosphere (epidermis and stomata); (4) modulate the radiation that penetrates into the leaf tissues (trichomes, the cuticle, and its underlying epidermis); (5) harvest the energy of visible sunlight to transform water and carbon dioxide into energy-rich sugars or sugar alcohols for export to the restof the plant (palisade and spongy mesophyll); and (6) store sugars and/or starch during the day to feed the plant during the night and/or acids during the night to support light-driven photosynthesis during the day (palisade and spongy mesophyll). Various regulatory controls that have been shaped through the evolutionary history of each plant species result in an incredible diversity of leaf form across the plant kingdom. Genetic programming is also flexible in allowing acclimatory phenotypic adjustments that optimize leaf functioning in response to a particular set of environmental conditions and biotic influences experienced by the plant. Moreover, leaves and the primary processes carried out by the leaf respond to changes in their environment, and the status of the plant, through multiple regulatory networks over time scales ranging from seconds to seasons. This book brings together the findings from laboratories at the forefront of research into various aspects of leaf function, with particular emphasis on the relationship to photosynthesis.


Editors and Affiliations

  • Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, USA

    William W. Adams III

  • Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo Ku, Hongo, Japan

    Ichiro Terashima

About the editors

William W. Adams III, a Professor at the University of Colorado, has pursued a lifelong passion for leaves. An investigation of the heterophyllous leaves (trichome-covered, atmospheric juvenile versus glabrous, tank-forming adult leaves) of an epiphytic bromeliad was followed by PhD research on photosynthesis and photoinhibition of plants with crassulacean acid metabolism. After postdoctoral work into leaf senescence, pollution impacts on leaves, and photosynthesis and photoprotection in leaves, cladodes, and lichens, he moved to Colorado in 1989.  During the intervening years, he, his wife and colleague (Prof. Barbara Demmig-Adams), and their students explored the regulation and ecophysiology of photosynthesis, photoprotection, and photoinhibition of numerous species under controlled conditions and in many habitats including the understory of sunfleck-dappled forests, arid and desert landscapes, grasslands, and montane and subalpine forests.  More recently, they discovered significant relationships between foliar phloem and xylem architecture (underlying capacities to load and export sugars and distribute water within the leaf), photosynthesis, and transpiration that vary among species and exhibit acclimatory adjustment to environmental growth conditions. The Leaf represents the renewal of ties between William and Ichiro that were initiated during their PhD and postdoctoral work, respectively, at the Australian National University in the mid-1980s. 

Ichiro Terashima began his study on the light environment within individual leaves and its effect on leaf photosynthesis with Prof. Toshiro Saeki, miniaturizing his supervisor’s study at the leaf canopy scale to the individual leaf scale. He subsequently conducted an eco-devo study examining effects of light direction on differentiation of palisade and spongy tissues in bifacial leaves with Prof. Noboru Hara, a plant anatomist. He then moved to the Australian National University and studied effects of light and nitrogen nutrition on leaf photosynthesis, patchy leaf photosynthesis in abscisic acid-treated leaves, and photoinhibition, followed by a position in Prof. Sakae Katoh’s laboratory at the University of Tokyo.  He became a full professor at Osaka University in 1997, and moved back to the University of Tokyo in 2006. With his colleagues and students, he has studied the influences of 1) green light in leaf photosynthesis, 2) mesophyll tissue in stomatal responses to environmental conditions, 3) soil dryness, high CO2 and ABA application on mesophyll conductance, 4) fluctuating light on photosynthesis, and 5) systemic signals such as sugars, hormones, peptides etc. on leaf development and senescence.

Bibliographic Information

  • Book Title: The Leaf: A Platform for Performing Photosynthesis

  • Editors: William W. Adams III, Ichiro Terashima

  • Series Title: Advances in Photosynthesis and Respiration

  • DOI: https://doi.org/10.1007/978-3-319-93594-2

  • Publisher: Springer Cham

  • eBook Packages: Biomedical and Life Sciences, Biomedical and Life Sciences (R0)

  • Copyright Information: Springer International Publishing AG, part of Springer Nature 2018

  • Hardcover ISBN: 978-3-319-93592-8Published: 08 November 2018

  • Softcover ISBN: 978-3-030-06689-5Published: 29 December 2018

  • eBook ISBN: 978-3-319-93594-2Published: 24 October 2018

  • Series ISSN: 1572-0233

  • Series E-ISSN: 2215-0102

  • Edition Number: 1

  • Number of Pages: LI, 575

  • Number of Illustrations: 34 b/w illustrations, 111 illustrations in colour

  • Topics: Plant Physiology, Plant Biochemistry

Buy it now

Buying options

eBook USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access