Read While You Wait - Get immediate ebook access, if available*, when you order a print book

Silicon Nanowire Transistors

Authors: Bindal, Ahmet, Hamedi-Hagh, Sotoudeh

Free Preview
    • Describes Silicon Nanowire (SNW) Transistors, as vertically constructed MOS n and p-channel transistors, with low static and dynamic power consumption and small layout footprint; 
    • Targets System-on-Chip (SoC) design, supporting very high transistor count (ULSI), minimal power consumption requiring inexpensive substrates for packaging; 
    • Enables fabrication of different types of memory on the same chip, such as capacitive cells and transistors with floating gates that can be used as DRAMs and Flash memories.
see more benefits

Buy this book

eBook $74.99
price for USA in USD
  • ISBN 978-3-319-27177-4
  • Digitally watermarked, DRM-free
  • Included format: PDF, EPUB
  • ebooks can be used on all reading devices
  • Immediate eBook download after purchase
Hardcover $99.00
price for USA in USD
  • ISBN 978-3-319-27175-0
  • Free shipping for individuals worldwide
  • Immediate ebook access, if available*, with your print order
  • Usually dispatched within 3 to 5 business days.
Softcover $99.00
price for USA in USD
  • ISBN 978-3-319-80085-1
  • Free shipping for individuals worldwide
  • Immediate ebook access, if available*, with your print order
  • Usually dispatched within 3 to 5 business days.
About this book

This book describes the n and p-channel Silicon Nanowire Transistor (SNT) designs with single and dual-work functions, emphasizing low static and dynamic power consumption.  The authors describe a process flow for fabrication and generate SPICE models for building various digital and analog circuits.  These include an SRAM, a baseband spread spectrum transmitter, a neuron cell and a Field Programmable Gate Array (FPGA) platform in the digital domain, as well as high bandwidth single-stage and operational amplifiers, RF communication circuits in the analog domain, in order to show this technology’s true potential for the next generation VLSI.  

About the authors

Ahmet Bindal received his M.S. and Ph.D. degrees in Electrical Engineering Department from the University of California, Los Angeles CA. His doctoral research was the material characterization and analysis of HEMT GaAs transistors. During his graduate studies, he was a research associate and technical consultant for Hughes Aircraft Co. In 1988, he joined the technical staff of IBM Research and Development Center in Fishkill, NY, where he worked as a device design and characterization engineer. He developed asymmetrical MOS transistors and ultra thin Silicon-On-Insulator (SOI) technologies for IBM. In 1993, he transferred to IBM in Rochester, MN, as a senior circuit design engineer to work on the floating-point unit for AS-400 main frame processor. He continued his circuit design career at Intel Corporation in Santa Clara, CA, where he designed 16-bit packed multipliers and adders for the MMX unit for Pentium II processors. In 1996, he joined Philips Semiconductors in Sunnyvale, CA, where he was involved in the designs of instruction and data caches, and various SRAM modules for the Trimedia processor. His involvement with VLSI architecture also started in Philips Semiconductors and led to the design of the Video-Out unit for the same processor. In 1998, he joined Cadence Design Systems as a VLSI architect and directed a team of engineers to design self-timed asynchronous processors. After approximately 20 years of industry work, he joined the Computer Engineering faculty at San Jose State University in 2002. His current research interests range from nano-scale electron devices to nano-scale architectures and robotics. Dr. Bindal has over 30 refereed scientific publications and 10 invention disclosures with IBM. He currently holds three U.S. patents with IBM and one with Intel Corporation.

Dr. Hamedi-Hagh received his Ph.D. from the University of Toronto, Canada in 2004. He joined the Electrical Engineering Department at San Jose State University (SJSU) in 2005. His areas of research and expertise include high frequency modeling of semiconductor device structures and design of Radio Frequency, Analog and Mixed-Signal integrated circuits for wireless and wireline communication systems. Dr. Hamedi-Hagh has developed the Radio Frequency Integrated Circuits laboratory and curriculum at both graduate and undergraduate levels with over $0.5M research funding and through close collaborations with industries. He has received several California State University (CSU) professional development grants, CSU Research Funds, Research, Scholarship and Creative Activity (RSCA) grants, SJSU Planning Council Grants, College of Engineering professional development grants and Junior Faculty Career Development Grants. He is a founding member of SJSU Smart Technology and Computing Center for Complex Systems (STCCS). In 2016, he was appointed as the Mixed-Signal endowed chair of the Electrical Engineering department. Dr. Hamedi-Hagh has over 30 refereed scientific journal and conference paper publications in prestigious national and international Institutes and societies. He received the best paper award at the Micronet Symposium in Quebec, Canada in 2001 and the IEEE International Symposium on Personal, Indoor and Mobile Radio Communications in Barcelona, Spain in 2004. Dr. Hamedi-Hagh has advised several hundred projects on design of integrated circuits and systems. He holds seven US and world patents on wireless circuits, systems and cryptography. His latest patent introduces suspendance® and trajectance® laws as alternatives to Kirchhoff’s laws for circuit analysis.

Table of contents (9 chapters)

Table of contents (9 chapters)

Buy this book

eBook $74.99
price for USA in USD
  • ISBN 978-3-319-27177-4
  • Digitally watermarked, DRM-free
  • Included format: PDF, EPUB
  • ebooks can be used on all reading devices
  • Immediate eBook download after purchase
Hardcover $99.00
price for USA in USD
  • ISBN 978-3-319-27175-0
  • Free shipping for individuals worldwide
  • Immediate ebook access, if available*, with your print order
  • Usually dispatched within 3 to 5 business days.
Softcover $99.00
price for USA in USD
  • ISBN 978-3-319-80085-1
  • Free shipping for individuals worldwide
  • Immediate ebook access, if available*, with your print order
  • Usually dispatched within 3 to 5 business days.
Loading...

Recommended for you

Loading...

Bibliographic Information

Bibliographic Information
Book Title
Silicon Nanowire Transistors
Authors
Copyright
2016
Publisher
Springer International Publishing
Copyright Holder
Springer International Publishing Switzerland
eBook ISBN
978-3-319-27177-4
DOI
10.1007/978-3-319-27177-4
Hardcover ISBN
978-3-319-27175-0
Softcover ISBN
978-3-319-80085-1
Edition Number
1
Number of Pages
XIV, 165
Number of Illustrations
140 b/w illustrations, 5 illustrations in colour
Topics

*immediately available upon purchase as print book shipments may be delayed due to the COVID-19 crisis. ebook access is temporary and does not include ownership of the ebook. Only valid for books with an ebook version. Springer Reference Works are not included.