Skip to main content
  • Book
  • © 2016

The Automated Design of Materials Far From Equilibrium

Authors:

  • Awarded the 2014 James Franck Institute for Best PhD Thesis Presentation and the 2013 Grainger Fellowship, awarded annually to the top experimentalist graduate student at the University of Chicago
  • Offers a new framework for the design of materials far from equilibrium
  • Presents an automated materials design system using simulations and 3D printing
  • Includes supplementary material: sn.pub/extras

Part of the book series: Springer Theses (Springer Theses)

Buy it now

Buying options

eBook USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

This is a preview of subscription content, log in via an institution to check for access.

Table of contents (7 chapters)

  1. Front Matter

    Pages i-xix
  2. Introduction

    • Marc Z. Miskin
    Pages 1-5
  3. Artificial Evolution

    • Marc Z. Miskin
    Pages 7-28
  4. Optimization

    • Marc Z. Miskin
    Pages 29-47
  5. Inverse Problems

    • Marc Z. Miskin
    Pages 49-61
  6. Transitions of Designs

    • Marc Z. Miskin
    Pages 63-72
  7. Online Design

    • Marc Z. Miskin
    Pages 73-85
  8. Conclusions

    • Marc Z. Miskin
    Pages 87-89

About this book

This thesis conceptualizes and implements a new framework for designing materials that are far from equilibrium. Starting with state-of-the-art optimization engines, it describes an automated system that makes use of simulations and 3D printing to find the material that best performs a user-specified goal. Identifying which microscopic features produce a desired macroscopic behavior is a problem at the forefront of materials science. This task is materials design, and within it, new goals and challenges have emerged from tailoring the response of materials far from equilibrium. These materials hold promising properties such as robustness, high strength, and self-healing. Yet without a general theory to predict how these properties emerge, designing and controlling them presents a complex and important problem. As proof of concept, the thesis shows how to design the behavior of granular materials, i.e., collections of athermal, macroscopic identical objects, by identifying the particle shapes that form the stiffest, softest, densest, loosest, most dissipative and strain-stiffening aggregates. More generally, the thesis shows how these results serve as prototypes for problems at the heart of materials design, and advocates the perspective that machines are the key to turning complex material forms into new material functions.

Authors and Affiliations

  • Cornell University, Ithaca, USA

    Marc Z. Miskin

Bibliographic Information

Buy it now

Buying options

eBook USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access