Skip to main content

Maximum Principles and Geometric Applications

  • Book
  • © 2016

Overview

  • Provides a self-contained approach to the study of geometric and analytic aspects of maximum principles, making it a perfect companion to other books on the subject
  • Presents the essential analytic tools and the geometric foundations needed to understand maximum principles and their geometric applications
  • Includes a wide range of applications of maximum principles to different geometric problems, including some topics that are rare in current literature such as Ricci solitons
  • Relevant to other areas of mathematics, namely, partial differential equations on manifolds, calculus of variations, and probabilistic potential theory

Part of the book series: Springer Monographs in Mathematics (SMM)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 59.99 USD 119.00
50% discount Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 79.99 USD 159.99
50% discount Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 79.99 USD 159.99
50% discount Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (9 chapters)

Keywords

About this book

This monograph presents an introduction to some geometric and analytic aspects of the maximum principle. In doing so, it analyses with great detail the mathematical tools and geometric foundations needed to develop the various new forms that are presented in the first chapters of the book. In particular, a generalization of the Omori-Yau maximum principle to a wide class of differential operators is given, as well as a corresponding weak maximum principle and its equivalent open form and parabolicity as a special stronger formulation of the latter. 


In the second part, the attention focuses on a wide range of applications, mainly to geometric problems, but also on some analytic (especially PDEs) questions including: the geometry of submanifolds, hypersurfaces in Riemannian and Lorentzian targets, Ricci solitons, Liouville theorems, uniqueness of solutions of Lichnerowicz-type PDEs and so on.


Maximum Principles and GeometricApplications is written in an easy style making it accessible to beginners. The reader is guided with a detailed presentation of some topics of Riemannian geometry that are usually not covered in textbooks. Furthermore, many of the results and even proofs of known results are new and lead to the frontiers of a contemporary and active field of research.

Reviews

“This is a very well-written book on an active area of research appealing to geometers and analysts alike, whether they are specialists in the field, or they simply desire to learn the techniques. Moreover, the applications included in this volume encompass a variety of directions with an accent on the geometry of hypersurfaces, while the high number of references dating from 2000 or later are a testimonial of the state of the art developments presented in this volume.” (Alina Stancu, zbMATH 1346.58001, 2016)

Authors and Affiliations

  • Departamento de Matemáticas, Universidad de Murcia, Murcia, Spain

    Luis J. Alías

  • Dipartimento di Matematica, Università degli Studi di Milano, Milan, Italy

    Paolo Mastrolia, Marco Rigoli

Bibliographic Information

Publish with us