Skip to main content

Recent Advances in Numerical Methods for Hyperbolic PDE Systems

NumHyp 2019

  • Conference proceedings
  • © 2021

Overview

  • State-of-the-art numerical methods with good properties are presented
  • Applications to many different flow models are shown including Euler and Navier-Stokes equations, multilayer and dispersive shallow water models, magnetohydrodynamics, multiphase flow, sediment transport, turbulent deflagrations, etc.
  • The combination of rigorous numerical analysis and real-world applications may stimulate new successful developments of mathematical techniques to solve challenging problems

Part of the book series: SEMA SIMAI Springer Series (SEMA SIMAI, volume 28)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (11 papers)

  1. Numerical Methods for General Problems

  2. Numerical Methods for Specific Problems

  3. New Flow Models

Keywords

About this book

The present volume contains selected papers issued from the sixth edition of the International Conference "Numerical methods for hyperbolic problems" that took place in 2019 in Málaga (Spain). NumHyp conferences, which began in 2009, focus on recent developments and new directions in the field of numerical methods for hyperbolic partial differential equations (PDEs) and their applications. The 11 chapters of the book cover several state-of-the-art numerical techniques and applications, including the design of numerical methods with good properties (well-balanced, asymptotic-preserving, high-order accurate, domain invariant preserving, uncertainty quantification, etc.), applications to models issued from different fields (Euler equations of gas dynamics, Navier-Stokes equations, multilayer shallow-water systems, ideal magnetohydrodynamics or fluid models to simulate multiphase flow, sediment transport, turbulent deflagrations, etc.), and the development of new nonlinear dispersive shallow-water models.

The volume is addressed to PhD students and researchers in Applied Mathematics, Fluid Mechanics, or Engineering whose investigation focuses on or uses numerical methods for hyperbolic systems. It may also be a useful tool for practitioners who look for state-of-the-art methods for flow simulation.


Editors and Affiliations

  • Department of Mathematical Analysis, Statistics and Applied Mathematics, University of Málaga, Málaga, Spain

    María Luz Muñoz-Ruiz, Carlos Parés

  • Department of Mathematics and Computer Science, University of Catania, Catania, Italy

    Giovanni Russo

About the editors

Carlos Parés is a Professor of Applied Mathematics at the University of Málaga (Spain). He is a specialist in numerical methods for nonlinear hyperbolic systems of partial differential equations. He promoted the creation and development of the EDANYA group of research, which is currently an international reference in the simulation of geophysical flows. He was among the promoters of the series of conferences Numerical Methods for Hyperbolic Problems that started in 2009 in Castro-Urdiales (Spain).

María Luz Muñoz Ruiz is an Associate Professor in Applied Mathematics at the University of Málaga (Spain), from which she received an M.S. and Ph.D. degrees in Mathematics. She belongs to the Differential Equations, Numerical Analysis and Applications (EDANYA) research group, whose interests focus on the numerical resolution of nonconservative hyperbolic systems and its application to the simulation of geophysical flows.

Giovanni Russo is a fullprofessor of numerical analysis at the University of Catania. Works on numerical methods for evolutionary partial differential equations, and other topics in computation and applied mathemastics. Author of more than a hundred papers on international journals. Associate editor of SIMA, CMS, and other journals, responsible for various national and international research projects, chair of several international conferences and workshops. Has been PhD coordinator for more than sixteen years.

Bibliographic Information

Publish with us