Skip to main content
  • Book
  • © 2021

Fatigue Crack Growth in Rubber Materials

Experiments and Modelling

Part of the book series: Advances in Polymer Science (POLYMER, volume 286)

Buy it now

Buying options

eBook USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

This is a preview of subscription content, log in via an institution to check for access.

Table of contents (20 chapters)

  1. Front Matter

    Pages i-xii
  2. The Effect of Polyglycols on the Fatigue Crack Growth of Silica-Filled Natural Rubber

    • O. Kratina, R. Stoček, P. Zádrapa, S. G. Sathi
    Pages 39-55
  3. The Fatigue Threshold of Rubber and Its Characterization Using the Cutting Method

    • Christopher G. Robertson, Radek Stoček, William V. Mars
    Pages 57-83
  4. Critical Plane Analysis of Rubber

    • W. V. Mars
    Pages 85-107
  5. Cavitation Micro-mechanisms in Silica-Filled Styrene-Butadiene Rubber Upon Fatigue and Cyclic Tensile Testing

    • C. E. Federico, H. R. Padmanathan, O. Kotecky, R. Rommel, G. Rauchs, Y. Fleming et al.
    Pages 109-129
  6. Influence of Filler Induced Cracks on the Statistical Lifetime of Rubber: A Review

    • Jens Meier, Stefan Robin, Marvin Ludwig, Mohammed El Yaagoubi
    Pages 153-177
  7. Fatigue Life Analysis of Solid Elastomer-Like Polyurethanes

    • Robert Eberlein, Yuta Fukada, Lucian Pasieka
    Pages 179-202
  8. Cavitation in Rubber Vulcanizates Subjected to Constrained Tensile Deformation

    • E. Euchler, R. Bernhardt, K. Schneider, G. Heinrich, T. Tada, S. Wießner et al.
    Pages 203-224
  9. Fatigue Crack Growth vs. Chip and Cut Wear of NR and NR/SBR Blend-Based Rubber Compounds

    • R. Stoček, P. Ghosh, A. Machů, J. Chanda, R. Mukhopadhyay
    Pages 225-244
  10. About the Influence of Materials Parameters on the Ultimate and Fatigue Properties of Elastomers

    • L. Chazeau, J. -M. Chenal, C. Gauthier, J. Kallungal, J. Caillard
    Pages 297-329
  11. Viscoelastic Crack Propagation: Review of Theories and Applications

    • N. Rodriguez, P. Mangiagalli, B. N. J. Persson
    Pages 377-420
  12. Dissipative Heating, Fatigue and Fracture Behaviour of Rubber Under Multiaxial Loading

    • S. Dedova, K. Schneider, M. Stommel, G. Heinrich
    Pages 421-443

About this book

The book summarizes recent international research and experimental developments regarding fatigue crack growth investigations of rubber materials. It shows the progress in fundamental as well as advanced research of fracture investigation of rubber material under fatigue loading conditions, especially from the experimental point of view. However, some chapters will describe the progress in numerical modeling and physical description of fracture mechanics and cavitation phenomena in rubbers. 


Initiation and propagation of cracks in rubber materials are dominant phenomena which determine the lifetime of these soft rubber materials and, as a consequence, the lifetime of the corresponding final rubber parts in various fields of application. Recently, these phenomena became of great scientific interest due to the development of new experimental methods, concepts and models. Furthermore, crack phenomena have an extraordinary impact on rubber wear and abrasion of automotive tires; and understanding of crack initiation and growth in rubbers will help to support the growthing number of activities and worldwide efforts of reduction of tire wear losses and abrasion based emissions.


Editors and Affiliations

  • Leibniz-Institut für Polymerforschung, Dresden e.V. and Technische Universität, Dresden, Dresden, Germany

    Gert Heinrich

  • Coesfeld GmbH & Co. KG, Dortmund, Germany

    Reinhold Kipscholl

  • PRL Polymer Research Lab, Centre of Polymer Systems, Tomas Bata University in Zlín, Zlín, Czech Republic

    Radek Stoček

About the editors



Gert Heinrich graduated from the University in Jena (Germany) in quantum physics in 1973. At the Technical University (TH) Leuna-Merseburg, he finished his doctorate in 1978 in polymer network physics and his Habilitation in 1986 about theory of polymer networks and topological constraints. In 1990 he received a position at the tire manufacturer Continental in Hanover (Germany) as senior research scientist and head of Materials Research. Heinrich continued his academic activities as lecturer at Universities of Hanover and Halle/Wittenberg. In 2002, he was appointed as full professor for “Polymer Materials and Rubber Technology” at the Technical University Dresden and as director of the Institute of Polymer Materials at the Leibniz Institute of Polymer Research Dresden e. V. (IPF). Since 2017 he is Senior Professor. His work has been recognized by several grants and awards, e.g. the George Stafford Whitby Award for distinguished teaching and research from theRubber Division of the ACS, the Colwyn Medal in UK for outstanding services to the rubber industry; the Carl Dietrich Harries Medal from the German Rubber Society, and the Lifetime Achievement Award from Tire Technology International Magazine. Science ranking (Google Scholar) indicates:  h-Index = 69;  i10-Index = 363 (19-01-2021).


Reinhold Kipscholl graduated as Dipl.-Ing. in engineering of data processing and electronics. He is active since more than 20 years in leading industrial positions, especially in the field of testing and characterization of materials with respect of their physical behavior. Since 20 years he is General Manager of Coesfeld GmbH & Co. KG (Dortmund), a German Company developing and producing material testing equipment for plastics and elastomers. Since 2012 R. Kipscholl is founder and General Manager of PRL Polymer Research Lab., a Czech Company researching and developing new testing methods for characterizationof fracture and wear behavior of rubbers. He has been awarded with the 2018 Fernley H. Bunbury Award (Rubber Division, American Chemical Society). Scopus indicates 10 publications.


Radek Stoček obtained his diploma degree as an engineer in 2005 from the Czech Technical University in Prague and received his Ph.D. in engineering science in 2012 from the Technical University Chemnitz (Germany), working with M. Gehde and parallel with G. Heinrich at IPF Dresden (G). Then he started an industrial career at Polymer Research Lab (PRL), Zlin, Czech Republic, and parallel an independent academic career at the Tomas Bata University (TBU) in Zlin. He finished his Habilitation in 2019. Currently he is holding the two positions as Head of R&D at PRL and Head of the Rubber Department at TBU. His research and scientific interests are focused on characterization of rubber material properties with respect to fatigue and fracture mechanics and on the development of new and advanced testing methodologies, hardware and equipments. One main goal is to optimize industrial rubber products in terms of performance and durability as well as to fasten development cycles and minimizing extensive real rubber product tests before production. His work has been recognized by awards from The Tire Society (USA). R. Stocek is author of 30 publications (according to Scopus) and holds two Utility Models.

Bibliographic Information

Buy it now

Buying options

eBook USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access