Stochastic Approaches to Electron Transport in Micro- and Nanostructures
Authors: Nedjalkov, Mihail, Dimov, Ivan, Selberherr, Siegfried
Free Preview- Presents the synergistic link between the development of mathematical models in micro- and nanoelectronics and the emergence of stochastic methods for their simulation
- Describes the evolution of the stochastic algorithms from classical to quantum transport conditions
- Fills the gap between other monographs which focus on the physical or numerical theory
Buy this book
- About this book
-
The book serves as a synergistic link between the development of mathematical models and the emergence of stochastic (Monte Carlo) methods applied for the simulation of current transport in electronic devices. Regarding the models, the historical evolution path, beginning from the classical charge carrier transport models for microelectronics to current quantum-based nanoelectronics, is explicatively followed. Accordingly, the solution methods are elucidated from the early phenomenological single particle algorithms applicable for stationary homogeneous physical conditions up to the complex algorithms required for quantum transport, based on particle generation and annihilation. The book fills the gap between monographs focusing on the development of the theory and the physical aspects of models, their application, and their solution methods and monographs dealing with the purely theoretical approaches for finding stochastic solutions of Fredholm integral equations.
- About the authors
-
Mihail (Mixi) Nedjalkov holds a Ph.D. degree in Physics and a Doctor of Science degree in Mathematics from the Bulgarian Academy of Sciences (BAS). He is a Senior Researcher with TU Wien, Austria and an Associated Professor with BAS. He published over 200 papers and one monograph. His research interests include solid-state physics, modeling of classical (Boltzmann) and quantum (Wigner) electron transport in micro- and nanostructures, collective phenomena, and theory and application of stochastic methods.
Ivan Dimov is a Professor of Mathematical Modelling at the Institute of Information and Communication Technologies at the Bulgarian Academy of Sciences (BAS). His research interests include Monte Carlo methods, computational physics, parallel algorithms and GRIDs, and environmental mathematical modeling. He is author of more than 170 scientific papers, 4 monographs and 15 book editorships. He served as a Scientific Secretary with BAS and received the highest Bulgarian scientific award, the Marin Drinov medal on ribbon.
Siegfried Selberherr is a Chair Professor at the TU Wien, Austria. With his research teams, he has published about 2000 manuscripts in journals, in books, and in proceedings, including 3 monographs and about 50 edited volumes. His research interests are modeling and simulation for nano- and microelectronics engineering. He has received numerous honors; he is a Fellow of the Institute of Electrical and Electronics Engineers, of the Academia Europaea, and of the European Academy of Science and Arts.
- Table of contents (15 chapters)
-
-
Concepts of Device Modeling
Pages 3-14
-
The Semiconductor Model: Fundamentals
Pages 15-23
-
Transport Theories in Phase Space
Pages 25-38
-
Monte Carlo Computing
Pages 39-43
-
Homogeneous Transport: Empirical Approach
Pages 47-53
-
Table of contents (15 chapters)
Recommended for you

Bibliographic Information
- Bibliographic Information
-
- Book Title
- Stochastic Approaches to Electron Transport in Micro- and Nanostructures
- Authors
-
- Mihail Nedjalkov
- Ivan Dimov
- Siegfried Selberherr
- Series Title
- Modeling and Simulation in Science, Engineering and Technology
- Copyright
- 2021
- Publisher
- Birkhäuser Basel
- Copyright Holder
- Springer Nature Switzerland AG
- eBook ISBN
- 978-3-030-67917-0
- DOI
- 10.1007/978-3-030-67917-0
- Hardcover ISBN
- 978-3-030-67916-3
- Series ISSN
- 2164-3679
- Edition Number
- 1
- Number of Pages
- XVI, 214
- Number of Illustrations
- 11 b/w illustrations, 1 illustrations in colour
- Topics