Skip to main content

On the Edge of Magnetic Fusion Devices

  • Book
  • © 2020

Overview

  • Reviews in detail the key recent theoretical and experimental research advances
  • Furthers our understanding of complex physics and technical issues related to edge plasma physics
  • Discusses existing gaps and future developments in magnetic fusion device

Part of the book series: Springer Series in Plasma Science and Technology (SSPST)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (10 chapters)

Keywords

About this book

This book reviews the current state of understanding concerning edge plasma, which bridges hot fusion plasma, with a temperature of roughly one million degrees Kelvin with plasma-facing materials, which have melting points of only a few thousand degrees Kelvin. In a fact, edge plasma is one of the keys to solution for harnessing fusion energy in magnetic fusion devices.

The physics governing the processes at work in the edge plasma involves classical and anomalous transport of multispecies plasma, neutral gas dynamics, atomic physics effects, radiation transport, plasma-material interactions, and even the transport of plasma species within the plasma-facing materials.

The book starts with simple physical models, then moves on to rigorous theoretical considerations and state-of-the-art simulation tools that are capable of capturing the most important features of the edge plasma phenomena. The authors compare the conclusions arising from the theoretical and computational analysis with the available experimental data. They also discuss the remaining gaps in their models and make projections for phenomena related to edge plasma in magnetic fusion reactors.

Authors and Affiliations

  • University of California, La Jolla, USA

    Sergei Krasheninnikov

  • University of Saskatchewan, Saskatoon, Canada

    Andrei Smolyakov

  • Kurchatov Institute & NRNU MEPhI, Moscow, Russia

    Andrei Kukushkin

About the authors

Sergei Krasheninnikov is a professor at the Mechanical Engineering Department, University California San Diego, USA. He is graduated from the Moscow Institute of Physics and Technical, known informally as PhysTech (Физтех). He was working at the Kurchatov Institute of Atomic Energy, Moscow, Russia and Plasma Science and Fusion Center at MIT, Cambridge, USA, and was involved in INTOR and ITER projects. His scientific interests span through different topics of plasma and atomic physics in fusion devices, plasma-material and laser-plasma interactions.

Andrei Smolyakov is a professor in the Department of Physics and Engineering Physics, University of Saskatchewan, Saskatoon Saskatchewan, Canada. He graduated from the Moscow Institute of Physics and Technology, known informally as PhysTech (Физтех) and worked at the Kurchatov Institute of Atomic Energy, Moscow Russia. His scientific interests include waves, instabilities, and nonlinear processesin magnetically confined fusion plasmas, material processing, and electric propulsion applications.

Dr. Andrei Kukushkin is a leading scientist at NRC Kurchatov Institute and NRNU MEPhI, Moscow, Russia. He graduated from Moscow State University. Being an employee of Kurchatov Institute, he was strongly involved in the INTOR project and then spent over 20 years at ITER developing the technology of the edge plasma modeling and applying it to providing the information on expected divertor performance for the designers. His scientific interests are concentrated on numerical modeling, mostly, of the edge and divertor plasma.

Bibliographic Information

Publish with us