Skip to main content

Transient Magnetic Fields

  • Book
  • © 2020

Overview

  • Provides a simple way of understanding how magnetic fields change with time

  • Includes online animations of magnetic field lines

  • Uniquely explains electromagnetic radiation generation, where an “electron scattering” analogue falls out naturally from the solution of Maxwell’s equations

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (18 chapters)

Keywords

About this book

This book is an original study aimed at understanding how vacuum magnetic fields change with time. Specifically, it describes the waves that radiate from a sphere when the electric current on its surface is turned on or off, either suddenly, gradually, or periodically.


Numerical simulations are an invaluable source of information about this and related subjects, but they are often more difficult to interpret than exact, closed-form solutions that can easily be applied to a variety of situations. Thus, the objective here is to obtain an exact solution of Maxwell’s equations in closed form—something simple, yet rigorous, which can be used as a model for understanding transient magnetic fields in more complicated situations. The work therefore stands as a self-contained solution of Maxwell’s equations for an electric current wrapped around the surface of a sphere.


This study assumes a strong background in electromagnetism or a related research area. Online animations are available for each figure to better illustrate the motions of magnetic field lines.

Reviews

“This book is a comprehensive report from the author’s theoretical investigations on transient magnetic fields … . All necessary calculations have been done analytically and presented in a very accessible manner, enabling the reader to follow them with ease. … The book has been carefully edited. It includes many color drawings showing the calculated magnetic field configurations.” (Radosław Szmytkowski, zbMATH 1479.78002, 2022)

Authors and Affiliations

  • Alexandria, USA

    Neil R. Sheeley

About the author

Dr. Sheeley received his BS (1960) and PhD (1965) degrees in physics from the Caltech in Pasadena CA. His PhD thesis was “Observations of Solar Magnetic Fields,” which was based on observations that he obtained at the Mt. Wilson Observatory under the supervision of Caltech Professor R.B. Leighton. Dr. Sheeley continued this work during 1965–1972 in the Solar Division of the Kitt Peak National Observatory, confirming his thesis result that strong magnetic fields exist outside of sunspots and discovering moving magnetic fields in the “moats” around sunspots. In 1973, Dr. Sheeley joined the Naval Research Laboratory and moved to Houston TX to take part in the operations phase of the NASA/Skylab mission. He spent 1974–1976 at KPNO in Tucson comparing these observations with Kitt Peak solar magnetograms.


In 1977, Dr. Sheeley moved to NRL in Washington DC, where he continued the Skylab data analysis and then began a long series of studies of the corona using observations with the Solwind white-light coronagraph on the P78-1 spacecraft (1979-1985), the LASCO coronagraph on SOHO (1995-), and the Secchi coronagraphs on the STEREO spacecraft (2006-). Also beginning in 1981, he used a flux-transport code developed by his NRL colleagues Dr. Jay Boris and Dr. C.R. DeVore to study the evolution of the Sun’s surface field. In 1986, he began a long-term collaboration with his NRL colleague, Dr. Yi-Ming Wang, who extended the flux-transport code into the corona. This work led to the Wang-Sheeley-Arge-enlil (WSA-enlil) solar wind and coronal mass ejection forecasting model, now on the National Weather Service website. 

In 2005, Dr. Sheeley received NRL’s E.O. Hulburt Award, and in 2009, he received the George Ellery Hale Prize of the Solar Physics Division of the American Astronomical Society. Dr. Sheeley retired from NRL in November 2016 and has been continuing his magnetic field studies in his retirement. He currently holds a Visiting Research Scientist appointment at the Lunar and Planetary Laboratory of the University of Arizona (LPL/ UA).


Bibliographic Information

Publish with us