Skip to main content
Book cover

Systems-Level Packaging for Millimeter-Wave Transceivers

  • Book
  • © 2019

Overview

  • Reviews in detail the state of the art in millimeter-wave transceivers
  • Enables researchers to make informed packaging decisions for their systems
  • Provides essential theoretical background information

Part of the book series: Smart Sensors, Measurement and Instrumentation (SSMI, volume 34)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (9 chapters)

Keywords

About this book

This book provides a system-level approach to making packaging decisions for millimeter-wave transceivers. In electronics, the packaging forms a bridge between the integrated circuit or individual device and the rest of the electronic system, encompassing all technologies between the two. To be able to make well-founded packaging decisions, researchers need to understand a broad range of aspects, including: concepts of transmission bands, antennas and propagation, integrated and discrete package substrates, materials and technologies, interconnects, passive and active components, as well as the advantages and disadvantages of various packages and packaging approaches, and package-level modeling and simulation. Packaging also needs to be considered in terms of system-level testing, as well as associated testing and production costs, and reducing costs. This peer-reviewed work contributes to the extant scholarly literature by addressing the aforementioned concepts and applying them to the context of the millimeter-wave regime and the unique opportunities that this transmission approach offers.


Authors and Affiliations

  • University of Johannesburg, Johannesburg, South Africa

    Mladen Božanić

  • Faculty of Engineering and the Built Environment, University of Johannesburg, Johannesburg, South Africa

    Saurabh Sinha

About the authors

Mladen Božanić (Ph.D, University of Pretoria), is a Senior IC Design Engineer responsible for mixed-mode design and design-for-test at Azoteq, South Africa and part-time researcher at the Department of Electrical and Electronic Engineering Science, University of Johannesburg. He is a Specialist Editor of South African Institute of Electrical Engineers (SAIEE) Africa Research Journal for the field of microelectronics and has authored or co-authored over 25 peer-reviewed contributions.

Prof Saurabh Sinha obtained his B.Eng, M.Eng, and Ph.D. degrees in Electronic Engineering from the University of Pretoria. As an established researcher, rated by the National Research Foundation (NRF), he has authored or co-authored over 110 publications in peer-reviewed journals and at international conferences. Prof Sinha is the Deputy Vice-Chancellor: Research and Internationalisation, University of Johannesburg. Prof Sinha served the 2014-2015 IEEE Board of Director and as IEEE Vice-President: Educational Activities.

Bibliographic Information

Publish with us