Skip to main content

Data-driven Generation of Policies

  • Book
  • © 2014

Overview

Part of the book series: SpringerBriefs in Computer Science (BRIEFSCOMPUTER)

  • 3561 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (6 chapters)

Keywords

About this book

This Springer Brief presents a basic algorithm that provides a correct solution to finding an optimal state change attempt, as well as an enhanced algorithm that is built on top of the well-known trie data structure. It explores correctness and algorithmic complexity results for both algorithms and experiments comparing their performance on both real-world and synthetic data. Topics addressed include optimal state change attempts, state change effectiveness, different kind of effect estimators, planning under uncertainty and experimental evaluation. These topics will help researchers analyze tabular data, even if the data contains states (of the world) and events (taken by an agent) whose effects are not well understood. Event DBs are omnipresent in the social sciences and may include diverse scenarios from political events and the state of a country to education-related actions and their effects on a school system. With a wide range of applications in computer science and the social sciences, the information in this Springer Brief is valuable for professionals and researchers dealing with tabular data, artificial intelligence and data mining. The applications are also useful for advanced-level students of computer science.

Authors and Affiliations

  • Department of Computer Science, University of Maryland, College Park, USA

    Austin Parker

  • Department of Computer Science, University of Oxford, Oxford, United Kingdom

    Gerardo I. Simari

  • Charles River Analytics Inc., Cambridge, USA

    Amy Sliva

  • Computer Science Department, University of Maryland, College Park, USA

    V.S. Subrahmanian

Bibliographic Information

Publish with us