Skip to main content
Book cover

Pipelined Lattice and Wave Digital Recursive Filters

  • Book
  • © 1996

Overview

Part of the book series: The Springer International Series in Engineering and Computer Science (SECS, volume 344)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (10 chapters)

Keywords

About this book

Pipelined Lattice and Wave Digital Recursive Filters uses look-ahead transformation and constrained filter design approaches. It is also shown that pipelining often reduces the roundoff noise in a digital filter. The pipelined recursive lattice and wave digital filters presented are well suited where increasing speed and reducing area or power or roundoff noise are important. Examples are wireless and cellular codec applications, where low power consumption is important, and radar and video applications, where higher speed is important.
The book presents pipelining of direct-form recursive digital filters and demonstrates the usefulness of these topologies in high-speed and low-power applications. It then discusses fundamentals of scaling in the design of lattice and wave digital filters. Approaches to designing four different types of lattice digital filters are discussed, including basic, one-multiplier, normalized, and scaled normalized structures. The roundoff noise in these lattice filters is also studied. The book then presents approaches to the design of pipelined lattice digital filters for the same four types of structures, followed by pipelining of orthogonal double-rotation digital filters, which eliminate limit cycle problems. A discussion of pipelining of lattice wave digital filters follows, showing how linear phase, narrow-band, sharp-transition recursive filters can be implemented using this structure. This example is motivated by a difficult filter design problem in a wireless codec application. Finally, pipelining of ladder wave digital filters is discussed.
Pipelined Lattice and Wave Digital Recursive Filters serves as an excellent reference and may be used as a text for advanced courses on the subject.

Authors and Affiliations

  • Chonbuk National University, Korea

    Jin-Gyun Chung

  • University of Minnesota, USA

    Keshab K. Parhi

Bibliographic Information

Publish with us