
About this book series
The role of adaptation, learning and optimization are becoming increasingly essential and intertwined. The capability of a system to adapt either through modification of its physiological structure or via some revalidation process of internal mechanisms that directly dictate the response or behavior is crucial in many real world applications. Optimization lies at the heart of most machine learning approaches while learning and optimization are two primary means to effect adaptation in various forms. They usually involve computational processes incorporated within the system that trigger parametric updating and knowledge or model enhancement, giving rise to progressive improvement. This book series serves as a channel to consolidate work related to topics linked to adaptation, learning and optimization in systems and structures. Topics covered under this series include:
- complex adaptive systems including evolutionary computation, memetic computing, swarm intelligence, neural networks, fuzzy systems, tabu search, simulated annealing, etc.
- machine learning, data mining & mathematical programming
- hybridization of techniques that span across artificial intelligence and computational intelligence for synergistic alliance of strategies for problem-solving.
- aspects of adaptation in robotics
- agent-based computing
- autonomic/pervasive computing
- dynamic optimization/learning in noisy and uncertain environment
- systemic alliance of stochastic and conventional search techniques
- all aspects of adaptations in man-machine systems.
This book series bridges the dichotomy of modern and conventional mathematical and heuristic/meta-heuristics approaches to bring about effective adaptation, learning and optimization. It propels the maxim that the old and the new can come together and be combined synergistically to scale new heights in problem-solving. To reach such a level, numerous research issues will emerge and researchers will find the book series a convenient medium to track the progresses made.
Indexed by SCOPUS, zbMATH, SCImago.
- Electronic ISSN
- 1867-4542
- Print ISSN
- 1867-4534
- Series Editor
-
- Yew Soon Ong,
- Abhishek Gupta,
- Maoguo Gong
Book titles in this series
-
-
Federated and Transfer Learning
- Editors:
-
- Roozbeh Razavi-Far
- Boyu Wang
- Matthew E. Taylor
- Qiang Yang
- Copyright: 2023
-
Optinformatics in Evolutionary Learning and Optimization
- Authors:
-
- Liang Feng
- Yaqing Hou
- Zexuan Zhu
- Copyright: 2021
-
Genetic Programming for Image Classification
An Automated Approach to Feature Learning
- Authors:
-
- Ying Bi
- Bing Xue
- Mengjie Zhang
- Copyright: 2021
-
Brain Storm Optimization Algorithms
Concepts, Principles and Applications
- Editors:
-
- Shi Cheng
- Yuhui Shi
- Copyright: 2019
Abstracted and indexed in
-
- SCImago
- SCOPUS
- zbMATH