Logo - springer
Slogan - springer

Mathematics - Algebra | Aims and Scope: Algebras and Representation Theory

Aims and Scope: Algebras and Representation Theory

The theory of rings, algebras and their representations has evolved to be a well-defined sub-discipline of general algebra, combining its proper methodology with that of other disciplines, thus leading to a wide variety of application fields, ranging from algebraic geometry or number theory to theoretical physics and robotics. Due to this, many papers in these domains got dispersed in the scientific literature, making it extremely difficult for researchers to keep track of recent developments. Algebras and Representation Theory aims to play a unifying role in this, presenting to its reader both up-to-date information about progress within the field of rings, algebras and their representations as well as clarifying relationships with other fields.
 
To realize this aim Algebras and Representation Theory will publish carefully refereed papers relating, in its broadest sense, to the structure of algebras, including Lie algebras and superalgebras, rings of differential operators, group rings and algebras, C*-algebras and Hopf algebras, and and its representation theory, including topics like algebraic combinatorics, categorification and geometrization.
 
Algebras and Representation Theory only accepts papers of a high quality covering significant and original research as well as expository survey papers written by specialists, wishing to present the `state-of-the-art' of well-defined subjects or subdomains. Occasionally, special issues on specific subjects will be published, the latter allowing specialists and non-specialists to quickly get acquainted with new developments and topics within the field of rings, algebras and their applications. In principle, for these special issues, guest editors will be invited to use their expertise to properly select invited contributors.