Skip to main content
  • Book
  • © 2019

Jatropha, Challenges for a New Energy Crop

Volume 3: A Sustainable Multipurpose Crop

  • Identifies and documents physiological bottlenecks within the J. curcas accessions
  • Gives scholarly reviews on selective breeding occurring at the moment
  • Shows how its commercial values can be improved by secondary products such as animal feed, biomass and chemicals
  • Shows how its oil can be best processed into biofuel
  • Discusses the sustainability of the crop in the future

Buy it now

Buying options

eBook USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

This is a preview of subscription content, log in via an institution to check for access.

Table of contents (25 chapters)

  1. Front Matter

    Pages i-xxi
  2. Selective Breeding and Genetic Diversity

    1. Front Matter

      Pages 1-1
    2. Genetic Improvement of Edible and Non-edible Jatropha for Marginal Environments in Sub-Saharan Africa

      • Matthias Martin, Brigitte Bohlinger, Elisa Senger, Euloge Dongmeza, Zafitsara Tantely Andrianirina, Juan M. Montes
      Pages 3-27
    3. Genetic Resources and Advances in the Development of New Varieties of Jatropha curcas L. in México

      • José Luis Solís Bonilla, Biaani Beeu Martínez Valencia, Guillermo López-Guillén, Alfredo Zamarripa Colmenero
      Pages 29-44
    4. Strategies in the Genetic Breeding of Jatropha curcas for Biofuel Production in Brazil

      • Bruno Galvêas Laviola, Erina Vitório Rodrigues, Larissa Pereira Ribeiro, Lidiane Aparecida Silva, Leonardo de Azevedo Peixoto, Leonardo Lopes Bhering
      Pages 45-62
    5. Prebreeding and Genetic Enhancement in Jatropha Through Interspecific Hybridization

      • Kularb Laosatit, Shinji Kikuchi, Narathid Muakrong, Peerasak Srinives
      Pages 63-78
    6. Genetic Transformation and Transgenics of Jatropha curcas, a Biofuel Plant

      • Qiantang Fu, Yan-Bin Tao, Zeng-Fu Xu
      Pages 79-93
    7. Genetic Engineering for the Improvement of Oil Content and Associated Traits in Jatropha curcas L.

      • Shaik G. Mastan, Mangal Singh Rathore, Swati Kumari, Reddy P. Muppala, Nitish Kumar
      Pages 95-110
    8. Transcriptomic View of Jatropha curcas L. Inflorescence

      • Nisha Govender, Zeti-Azura Mohamed-Hussein, Ratnam Wickneswari
      Pages 111-130
    9. Application of Molecular Markers in Genetic Improvement of Jatropha

      • Anoop Anand Malik, Shashi Bhushan Tripathi
      Pages 131-143
    10. Genomic Resources and Marker-Assisted Selection in Jatropha curcas

      • Daniele Trebbi, Samathmika Ravi, Chiara Broccanello, Claudia Chiodi, Piergiorgio Stevanato
      Pages 145-160
  3. Metabolism

    1. Front Matter

      Pages 161-161
    2. Proteomic Studies in Jatropha curcas Seeds

      • José Ángel Huerta-Ocampo, Ana Paulina Barba de la Rosa
      Pages 181-198
    3. Pervasive System Biology for Active Compound Valorization in Jatropha

      • Nicolas Carels, Milena Magalhães, Carlyle Ribeiro Lima, Bir Bahadur, Marcio Argollo de Menezes
      Pages 199-251
  4. Physiology and Plant Production

    1. Front Matter

      Pages 253-253
    2. Agronomy of Jatropha curcas in Mexico

      • Guillermo López-Guillén, José Luis Solís Bonilla, Biaani Beeu Martínez Valencia, Elizabeth Herrera Parra, Alfredo Zamarripa Colmenero
      Pages 255-272
    3. Can One Use Chlorophyll A Fluorescence as a Physiological Marker of Jatropha curcas L.?

      • Diolina Moura Silva, Ramon Negrão Santos Jr., Pedro Corrêa Damasceno Jr.
      Pages 289-321
    4. Jatropha: From Seed to Plant, Seed, Oil, and Beyond

      • Atul Grover, Sweta Singh, Abhinav Singh, Madhu Bala
      Pages 323-346

About this book

Jatropha curcas, or physic nut, is a small tree that, in tropical climates, produces fruits with seeds containing ~38% oil. The physic nut has the potential to be highly productive and is amenable to subculture in vitro and to genetic modification. It also displays remarkable diversity and is relatively easy to cross hybridize within the genus. Thanks to these promising features, J. curcas is emerging as a promising oil crop and is gaining commercial interest among the biofuel research communities. However, as a crop, physic nut has been an economic flop since 2012, because the species was not fully domesticated and the average productivity was less than 2 t/ha, which is below the threshold of profitability.^7 t/ha could be reached and it is contributing to new markets in some countries. As such, it is important fro research to focus on the physiology and selective breeding of Jatropha .

This book provides a positive global update on Jatropha, a crop that has suffered despite its promising agronomic and economic potential. The editors have used their collective expertise in agronomy, botany, selective breeding, biotechnology, genomics and bioinformatics to seek out high-quality contributions that address the bottleneck features in order to improve the economic trajectory of physic nut breeding.

Editors and Affiliations

  • ICAR-Indian Institute of Oilseeds Research, Hyderabad, India

    Sujatha Mulpuri

  • Oswaldo Cruz Foundation (Fiocruz), Center for Technological Development in Health (CDTS), Rio de Janeiro, Brazil

    Nicolas Carels

  • Department of Botany, Kakatiya University, Warangal, India

    Bir Bahadur

About the editors

Mulpuri Sujatha graduated in Plant Sciences from the University of Hyderabad (UoH), India. She has a Ph.D. in Genetics from Osmania University (OU), Hyderabad, and has worked on intergeneric and interspecific affinities between Ricinus and Jatropha. Dr. Sujatha is a versatile researcher, adopting conventional and modern tools for the improvement of oilseed crops encompassing the areas of genetics, tissue culture and biotechnology. Her achievements include the development stable male sterile lines in safflower, sunflower and niger; optimization of tissue culture and genetic transformation protocols; development of transgenic events in castor for foliage feeders and sunflower for resistance to necrosis disease; use of molecular markers in diversity analysis and tagging of desirable traits in sunflower (downy mildew, fertility restoration) and Jatropha (non-toxicity). Dr. Sujatha has also carried out pioneering work on Jatropha with regard to tissue culture, genetic diversity analysis of native and world collections and interspecific hybridization, which have provided valuable leads for genetic enhancement of J. curcas.

Nicolas Carels graduated in Agronomy in Belgium and completed a PhD in Plant Pathology (FUSAGx, Gembloux) prior to working as a scientist on the elaboration of the first genetic map of sugarbeet at the end of the 1980's (ICIseed-SES, Belgium). He then moved to Paris (IJM, CNRS, France) where he completed a second PhD on the genome organization in plants. He continued his work on genomics in Italy (SZN, Naples) and Spain (INTA-CAB, Madrid, Torrejon de Ardoz) before moving to Brazil (Bahia, Ilhéus, UESC), where he contributed to the application of bioinformatics and genomics to the improvement of Cacao and Rubber Tree for resistance to fungal diseases. His initial investigations on Jatropha covered the measurement of the genome size by flow cytometry and the application of reverse genetics to detect QTLs for oil production with the purpose of breeding Jatropha for this trait. He is now a Federal Officer of Fiocruz (Rio de Janeiro, Brazil) and is interested in the exploration of genomics, system modeling, bioinformatics, computational biology, and natural products for the benefit human health, with a particular focus on therapeutics for cancer.

Bir Bahadur, formerly Professor, Chairman and Head of the Department, and Dean of the Faculty of Science at Kakatiya University, Warangal, India, he has also taught at Osmania University, Hyderabad, India. He obtained his Ph.D. in Plant Genetics from Osmania University and was closely associated with Prof. J.B.S. Haldane, F.R.S, a renowned British geneticist. He made significant contributions in several areas of plant biology, especially heteromorphic incompatibility; genetics; mutagenesis; plant tissue culture morphogenesis; biotechnology; plant asymmetry and handedness; ethnobotany; application of SEM pollen and seeds in relation to systematics;medicinal plants; and Jatropha and Castor. He has mentored thousands of graduates and postgraduate students and taught genetics, biotechnology, plant molecular biology, plant reproduction, and related subjects for over 45 years and has accumulated 50 years of research experience in these areas. He has been the recipient of nu,erous awards, fellowships and honors, including the Prof. Vishwambar Puri Gold Medal, Bharath Jyoti Award, Royal Society Bursary & Honorary Fellow of Birmingham University (UK). 

Bibliographic Information

Buy it now

Buying options

eBook USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access