Skip to main content
Book cover

A First Introduction to Quantum Physics

  • Textbook
  • © 2018

Overview

  • Explores key concepts in quantum theory using the simplest physical systems
  • Advances quantum theory with only simple mathematics that is developed as it is needed
  • Illustrates each key concept with modern examples such as gravitational wave detection, atomic clocks, magnetic resonance imaging, and the scanning tunneling microscope
  • Contains a complete set of end-of-chapter exercises

Part of the book series: Undergraduate Lecture Notes in Physics (ULNP)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (10 chapters)

Keywords

About this book

In this undergraduate textbook, the author develops the quantum theory from first principles based on very simple experiments: a photon travelling through beam splitters to detectors, an electron moving through a Stern-Gerlach machine, and an atom emitting radiation. From the physical description of these experiments follows a natural mathematical description in terms of matrices and complex numbers. The first part of the book examines how experimental facts force us to let go of some deeply held preconceptions and develops this idea into a mathematical description of states, probabilities, observables, and time evolution using physical applications. The second part of the book explores more advanced topics, including the concept of entanglement, the process of decoherence, and extension of the quantum theory to the situation of a particle in a one-dimensional box. Here, the text makes contact with more traditional treatments of quantum mechanics. The remaining chapters delve deeply into the idea of uncertainty relations and explore what the quantum theory says about the nature of reality. The book is an ideal and accessible introduction to quantum physics, with modern examples and helpful end-of-chapter exercises.

Authors and Affiliations

  • University of Sheffield, Sheffield, United Kingdom

    Pieter Kok

About the author

Pieter Kok is a Reader in Quantum Information Theory at the University of Sheffield, United Kingdom. His research interests include quantum information theory and quantum precision measurements. He studied physics at Utrecht University in the Netherlands and received his PhD in quantum teleportation from the University of Wales in 2001. He has contributed to practical architectures for quantum computing, and Heisenberg-limited quantum metrology and imaging.

Bibliographic Information

Publish with us