Skip to main content

Energy Transmission and Synchronization in Complex Networks

Mathematical Principles

  • Book
  • © 2016

Overview

  • Nominated as an outstanding Ph.D. thesis by the University of Aberdeen, UK
  • Offers exact solutions to the problems addressed
  • Outlines explicit derivations
  • Presents easy implementation and readability of results
  • Includes supplementary material: sn.pub/extras

Part of the book series: Springer Theses (Springer Theses)

  • 2795 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (5 chapters)

Keywords

About this book

This work tackles the problems of understanding how energy is transmitted and distributed in power-grids as well as in determining how robust this transmission and distribution is when modifications to the grid or power occur. The most important outcome is the derivation of explicit relationships between the structure of the grid, the optimal transmission and distribution of energy, and the grid’s collective behavior (namely, the synchronous generation of power). These relationships are extremely relevant for the design of resilient power-grid models. To allow the reader to apply these results to other complex systems, the thesis includes a review of relevant aspects of network theory, spectral theory, and novel analytical calculations to predict the existence and stability of periodic collective behavior in complex networks of phase oscillators, which constitute a paradigmatic model for many complex systems.

Authors and Affiliations

  • Universidad de la República, Montevideo, Uruguay

    Nicolás Rubido

About the author

Nicolas Rubido received his Ph.D. in 2014 from the University of Aberdeen, which he owes to the 2011 the Scottish Universities Physics Alliance studentship prize. He received his B.Sc. (2008) and M.Sc. (2010) degrees from the Universidad de la República, Uruguay, where he is now an Adjunct Professor. There, he was awarded a research initiation scholarship (2009) to study turbulence phenomena and a post-graduate scholarship (2010) to research into synchronization phenomena in gregarious fireflies, which resulted in various publications. In general, his research focuses on understanding the structure and behaviours of different complex systems from a mathematical and data-analysis perspective.

Bibliographic Information

Publish with us