Skip to main content
  • Textbook
  • © 2021

Stochastic Processes in Cell Biology

Volume II

Authors:

  • First graduate textbook in interdisciplinary applied mathematics that focuses on applications of stochastic processes to cell biology
  • Introduces concepts in stochastic process via motiviating biological applications
  • Solutions to exercises provided as supplementary material
  • Includes large number of examples and exercises, highly illustrated

Part of the book series: Interdisciplinary Applied Mathematics (IAM, volume 41)

Buy it now

Buying options

eBook USD 29.99 USD 44.99
33% discount Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 39.99 USD 59.99
33% discount Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 49.99 USD 84.99
41% discount Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

This is a preview of subscription content, log in via an institution to check for access.

Table of contents (7 chapters)

  1. Front Matter

    Pages i-xxxii
  2. Sensing the environment

    • Paul C. Bressloff
    Pages 749-843
  3. Self-organization and assembly of cellular structures

    • Paul C. Bressloff
    Pages 1085-1150
  4. Dynamics and regulation of the cytoskeleton

    • Paul C. Bressloff
    Pages 1151-1265
  5. Bacterial population growth and collective behavior

    • Paul C. Bressloff
    Pages 1267-1357
  6. Stochastic reaction–diffusion processes

    • Paul C. Bressloff
    Pages 1359-1398
  7. Back Matter

    Pages 1399-1446

About this book

This book develops the theory of continuous and discrete stochastic processes within the context of cell biology. In the second edition the material has been significantly expanded, particularly within the context of nonequilibrium and self-organizing systems. Given the amount of additional material, the book has been divided into two volumes, with volume I mainly covering molecular processes and volume II focusing on cellular processes. 


A wide range of biological topics are covered in the new edition, including stochastic ion channels and excitable systems, molecular motors, stochastic gene networks, genetic switches and oscillators, epigenetics, normal and anomalous diffusion in complex cellular environments, stochastically-gated diffusion, active intracellular transport, signal transduction, cell sensing, bacterial chemotaxis, intracellular pattern formation, cell polarization, cell mechanics, biological polymers and membranes, nuclear structure and dynamics, biological condensates, molecular aggregation and nucleation, cellular length control, cell mitosis, cell motility, cell adhesion, cytoneme-based morphogenesis, bacterial growth, and quorum sensing. The book also provides a pedagogical introduction to the theory of stochastic and nonequilibrium processes – Fokker Planck equations, stochastic differential equations, stochastic calculus, master equations and jump Markov processes, birth-death processes, Poisson processes, first passage time problems, stochastic hybrid systems, queuing and renewal theory, narrow capture and escape, extreme statistics, search processes and stochastic resetting, exclusion processes, WKB methods, large deviation theory, path integrals, martingales and branching processes, numerical methods, linear response theory, phase separation, fluctuation-dissipation theorems, age-structured models, and statistical field theory. This text is primarily aimed at graduate students and researchers working in mathematical biology, statistical and biological physicists, and applied mathematicians interested in stochastic modeling. Applied probabilists should also find it of interest. It provides significant background material in applied mathematics and statistical physics, and introduces concepts in stochastic and nonequilibrium processes via motivating biological applications. The book is highly illustrated and contains a large number of examples and exercises that further develop the models and ideas in the body of the text. It is based on a course that the author has taught at the University of Utah for many years.

Authors and Affiliations

  • Department of Mathematics, University of Utah, Salt Lake City, USA

    Paul C. Bressloff

About the author

Paul Bressloff is a Professor of Mathematics in the Department of Mathematics at the University of Utah, where he is a faculty member of the Mathematical Biology Group and the Brain Institute.  He is also a Visiting Professor at the Mathematical Institute, University of Oxford and INRIA, Sophia-Antipolis.  Professor Bressloff's research interests lie in the areas of mathematical neuroscience and theoretical biophysics.

Bibliographic Information

Buy it now

Buying options

eBook USD 29.99 USD 44.99
33% discount Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 39.99 USD 59.99
33% discount Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 49.99 USD 84.99
41% discount Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access