Skip to main content

High Performance Simulation for Industrial Paint Shop Applications

  • Book
  • © 2021

Overview

  • Provides the necessary background on fluid simulations, both from the perspective of simulation and high-performance computing
  • Discusses details of HPC methods used to make corresponding methods applicable to even very complex, realistic problems, such as industrial paint shop applications
  • Provides not only theoretical background on the covered methods, but also shows their application to actual problems from the automotive industry

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (11 chapters)

  1. Introduction and Background

  2. Grid-Based Methods

  3. Volumetric Decomposition Methods

  4. Particle-Based Methods

  5. Conclusion

Keywords

About this book

This book describes the current state of the art for simulating paint shop applications, their advantages and limitations, as well as corresponding high-performance computing (HPC) methods utilized in this domain. The authors provide a comprehensive introduction to fluid simulations, corresponding optimization methods from the HPC domain, as well as industrial paint shop applications. They showcase how the complexity of these applications bring corresponding fluid simulation methods to their limits and how these shortcomings can be overcome by employing HPC methods. To that end, this book covers various optimization techniques for three individual fluid simulation techniques, namely grid-based methods, volumetric decomposition methods, and particle-based methods.

Authors and Affiliations

  • Johannes Kepler University, Linz, Austria

    Kevin Verma, Robert Wille

About the authors

Kevin Verma received his bachelor's and master's degree in Embedded Systems from the University of Applied Sciences Upper Austria, Hagenberg, Austria in 2013 and 2015, respectively. In 2020, he received his PhD in Computer Science from the Johannes Kepler University Linz, Linz, Austria. His research interests include High Performance Computing, Computational Fluid Dynamics and modeling and simulation of complex applications. In this area, he has published several papers in journals, international conferences and peer-reviewed workshops.

Robert Wille is Full Professor at the Johannes Kepler University Linz, Austria, and Chief Scientific Officer at the Software Competence Center Hagenberg, Austria. He received the Diploma and Dr.-Ing. degrees in Computer Science from the University of Bremen, Germany, in 2006 and 2009, respectively. Since then, he worked at the University of Bremen, the German Research Center for Artificial Intelligence (DFKI), the University of Applied Science ofBremen, the University of Potsdam, and the Technical University Dresden. Since 2015, he is working in Linz/Hagenberg. His research

Bibliographic Information

Publish with us