Skip to main content
Book cover

Precipitation Partitioning by Vegetation

A Global Synthesis

  • Book
  • © 2020

Overview

  • Presents a comprehensive critical review of research on the first process in the rainfall-to-runoff hydrological pathway
  • Identifies knowledge gaps in precipitation partitioning processes and impacts on the climate and terrestrial ecohydrological systems
  • Provides a holistic contextualization of precipitation partitioning at the global scale
  • Is a valuable reference tool for a wide range of geoscience and environmental specialists

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (16 chapters)

Keywords

About this book

This book presents research on precipitation partitioning processes in vegetated ecosystems, putting them into a global context. It describes the processes by which meteoric water comes into contact with the vegetation's canopy, typically the first surface contact of precipitation on land. It also discusses how precipitation partitioning by vegetation impacts the amount, patterning, and chemistry of water reaching the surface, as well as the amount and timing of evaporative return to the atmosphere. Although this process has been extensively studied, this is the first review of the global literature on the partitioning of precipitation by forests, shrubs, crops, grasslands and other less-studies plant types. 

The authors offer global contextualization combined with a detailed discussion of the impacts for the climate and terrestrial ecohydrological systems. As such, this comprehensive overview is a valuable reference tool for a wide range of specialists and students in the fields of geoscience and the environment.



Editors and Affiliations

  • Applied Coastal Research Laboratory, Georgia Southern University, Savannah, USA

    John T. Van Stan, II

  • Research Applications Lab, National Center for Atmospheric Research, Boulder, USA

    Ethan Gutmann

  • Department of Catchment Hydrology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany

    Jan Friesen

About the editors

Dr. Van Stan is an ecohydrologist at Georgia Southern University in Savannah, Georgia (USA). He enjoys collecting field observations of water and elemental fluxes in vegetated ecosystems during storms—and developing sensors to overcome observational limitations when they arise. He has worked at sites in North and Central America and Europe to improve our understanding of how precipitation partitioning affects other ecosystem processes within, above and below plant canopies. 

Dr. Gutmann is a hydrologist in the Research Applications Lab at the National Center for Atmospheric Research in Boulder, Colorado (USA). His background in hydrology, geology, and computer science found a happy marriage in remote sensing and hydrological and atmospheric modeling. A passion for the outdoors has taken him to remote corners of the world, climbing mountains in Peru, Nepal and Tanzania. Ethan also enjoys scientific outreach, having dabbled in science blogging at arstechnica and science videography with Earth Initiatives. 

Dr. Friesen is an ecohydrologist at the Department of Catchment Hydrology, Helmholtz Centre for Environmental Research – UFZ, Leipzig (Germany). His research primarily focuses on forest ecohydrology, remote sensing, and sensor development where he applies and develops new monitoring solutions to bridge the gap between site studies and remote sensing. He has extensive experience in semi-arid and data scarce countries such as Ghana, Burkina Faso, Nigeria, and Oman and his work has a strong connection to water management issues.

Bibliographic Information

Publish with us