Skip to main content

Seismic Inversion Methods: A Practical Approach

  • Book
  • © 2020

Overview

  • Explains all popular seismic inversion methods and their mathematical backgrounds
  • Describes inversion based on global optimization, together with its application to both synthetic and real data
  • Discusses artificial neural network techniques, which are used to predict various petrophysical parameters in the seismic section away from the boreholes

Part of the book series: Springer Geophysics (SPRINGERGEOPHYS)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (7 chapters)

Keywords

About this book

This book introduces readers to seismic inversion methods and their application to both synthetic and real seismic data sets. Seismic inversion methods are routinely used to estimate attributes like P-impedance, S-impedance, density, the ratio of P-wave and S-wave velocities and elastic impedances from seismic and well log data. These attributes help to understand lithology and fluid contents in the subsurface. There are several seismic inversion methods available, but their application and results differ considerably, which can lead to confusion. This book explains all popular inversion methods, discusses their mathematical backgrounds, and demonstrates their capacity to extract information from seismic reflection data. The types covered include model-based inversion, colored inversion, sparse spike inversion, band-limited inversion, simultaneous inversion, elastic impedance inversion and geostatistical inversion, which includes single-attribute analysis, multi-attribute analysis, probabilistic neural networks and multi-layer feed-forward neural networks. In addition, the book describes local and global optimization methods and their application to seismic reflection data. Given its multidisciplinary, integrated and practical approach, the book offers a valuable tool for students and young professionals, especially those affiliated with oil companies.

Authors and Affiliations

  • Department of Geophysics, Institute of Sciences, Banaras Hindu University, Varanasi, India

    S. P. Maurya, N. P. Singh

  • Department of Earth Sciences, Indian Institute of Technology Bombay, Mumbai, India

    K. H. Singh

Bibliographic Information

Publish with us