Skip to main content
Book cover

Tests of Lorentz Invariance with an Optical Ring Cavity

  • Book
  • © 2017

Overview

  • Nominated as an outstanding contribution by The University of Tokyo in 2016
  • Describes the latest experiment for Lorentz invariance in the Universe
  • Summarizes the Standard Model Extension, interferometry with optical ring cavity, and feedback control for non-expert readers
  • Complements the protocol of the most precise experiment
  • Includes supplementary material: sn.pub/extras

Part of the book series: Springer Theses (Springer Theses)

  • 2599 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 109.99
Price excludes VAT (USA)
This title has not yet been released. You may pre-order it now and we will ship your order when it is published on 20 Apr 2017.
  • Durable hardcover edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (7 chapters)

Keywords

About this book

This thesis describes one of the most precise experimental tests of Lorentz symmetry in electrodynamics by light-speed anisotropy measurement with an asymmetric optical ring cavity. The author aims to answer the fundamental, hypothetical debate on Lorentz symmetry in the Universe. He concludes that the symmetry is protected within an error of 10-15, which means providing one of the most stringent upper limits on the violation of the Lorentz symmetry in the framework of the Standard Model Extension.

It introduces the following three keys which play an important role in achieving high-precision measurement: (1) a high-index element (silicon) interpolated into part of the light paths in the optical ring cavity, which improves sensitivity to the violation of the Lorentz symmetry, (2) double-pass configuration of the interferometer, which suppresses environmental noises, and (3) continuous data acquisition by rotating the optical ring cavity, which makes it possible tosearch for higher-order violations of Lorentz symmetry. In addition to those well-described keys, a comprehensive summary from theoretical formulations to experimental design details, data acquisition, and data analysis helps the reader follow up the experiments precisely.

Authors and Affiliations

  • Department of Physics, The University of Tokyo, Japan

    Yuta Michimura

About the author

Yuta Michimura, an assistant professor at the Department of Physics, The University of Tokyo, is an experimentalist in the theory of relativity and gravity. He is working on the development of the gravitational wave telescope KAGRA and experimental verification of fundamental physics.

Prof. Michimura received his Bachelor of Science in physics from The University of Tokyo in 2010. Thereafter he joined the group of Professor Kimio Tsubono at the Department of Physics, The University of Tokyo, and completed his Master of Science in physics in 2012 and his Doctor of Science in physics in 2015. He was awarded a research fellowship for Young Scientists (DC2) of the Japan Society for the Promotion of Science (JSPS), and was supported by JSPS between April 2013 and June 2014. In 2015, he received the Young Scientist Award of the Physical Society of Japan.

Bibliographic Information

Publish with us