Skip to main content

Mathematical Modeling of Protein Complexes

  • Book
  • © 2018

Overview

  • Applies computational methods to simulate the electrostatic interaction of protein molecules to form complexes and domains
  • Predicts amino acid sequences with specific physical properties
  • Helps to improve the efficiency of experiments

Part of the book series: Biological and Medical Physics, Biomedical Engineering (BIOMEDICAL)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (8 chapters)

Keywords

About this book

This book is devoted to the physical and mathematical modeling of the formation of complexes of protein molecules. The models developed show remarkable sensitivity to the amino acid sequences of proteins, which facilitates experimental studies and allows one to reduce the associated costs by reducing the number of measurements required according to the developed criteria. These models make it possible to reach a conclusion about the interactions between different amino acid chains and to identify more stable sites on proteins.  The models also take the phosphorylation of amino acid residues into account.
At the end of the book, the authors present possible directions of application of their physical and mathematical models in clinical medicine.


Reviews

“It is to be expected that the monograph will be of interest to researchers in the field of applied proteomics who possess an aptitude for mathematical modelling and numerical simulation.” (Nikola Popovic, zbMATH 1470.92004, 2021)

Authors and Affiliations

  • Saint Petersburg State University, Saint Petersburg, Russia

    Tatiana Koshlan

  • Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, Russia

    Kirill Kulikov

About the authors

Tatiana Koshlan graduated from St. Petersburg State University, the department of Molecular Biophysics and Physics of Polymers. She is Master of Science in the field of biophysics. Now she is a post-graduate student at the department of Photonics, St. Petersburg State University. Her interdisciplinary research is in the field of biological and physical sciences. Her research is devoted to studying the interaction of biological molecules by physical methods, using mathematical tools to develop new technology and software with the ability to perform systematic measurements of various data sets of biological interactions.

Kirill Kulikov has been a full professor since 2014 at Peter the Great St. Petersburg Polytechnical University, Institute of Applied Mathematics and Mechanics, Department of Higher Mathematics. He received his Ph.D. in Physics and Mathematics with «Mathematical Modeling of the Optical Properties of Multilayer Biological Systems and Structures in their Heterogeneous Conjugation» (2004). He has habilitation at the State Polytechnical University (Great St. Petersburg Polytechnical University) of St. Petersburg, Russia (Doctor Science in Physics and Mathematics). His Doctor of Science thesis title was «Analytical models of interaction of laser radiation with complex heterogeneous biological tissues» (2014). His research interests are theory diffraction theory, electrodynamics, physics of lasers, tissue optical methods of mathematical modeling in biological tissue optics and numerical method, biophysics. 

Bibliographic Information

Publish with us