SpringerBriefs in Mathematics

An Introduction to the Topological Derivative Method

Authors: Novotny, Antonio André, Sokolowski, Jan

Free Preview
  • Introduces the concept of topological derivative in a simple and pedagogical manner using a direct approach based on calculus of variations combined with compound asymptotic analysis
  • Offers numerical methods in shape optimization, including algorithms and applications in the context of compliance structural topology optimization and topology design of compliant mechanisms
  • Explores the mathematical aspects of topological asymptotic analysis as well as on applications of the topological derivative in computational mechanics, including shape and topology optimization
おすすめポイントをすべて見る

書籍の購入

イーブック ¥5,615
価格の適用国: Japan (日本円価格は個人のお客様のみ有効) (小計)
  • ISBN 978-3-030-36915-6
  • ウォーターマーク付、 DRMフリー
  • ファイル形式: EPUB, PDF
  • どの電子書籍リーダーからでもすぐにお読みいただけます。
  • ご購入後、すぐにダウンロードしていただけます。
ソフトカバー ¥7,019
価格の適用国: Japan (日本円価格は個人のお客様のみ有効) (小計)
  • ISBN 978-3-030-36914-9
  • 個人のお客様には、世界中どこでも配送料無料でお届けします。
  • Usually dispatched within 3 to 5 business days.
この書籍について

This book presents the topological derivative method through selected examples, using a direct approach based on calculus of variations combined with compound asymptotic analysis. This new concept in shape optimization has applications in many different fields such as topology optimization, inverse problems, imaging processing, multi-scale material design and mechanical modeling including damage and fracture evolution phenomena. In particular, the topological derivative is used here in numerical methods of shape optimization, with applications in the context of compliance structural topology optimization and topology design of compliant mechanisms. Some exercises are offered at the end of each chapter, helping the reader to better understand the involved concepts.

著者について

Antonio André Novotny is a Senior Researcher at the National Laboratory for Scientific Computing, Petrópolis, Brazil. His research topics include the theoretical development and applications of the topological derivative method to shape and topology optimization; inverse problems; imaging processing;  multi-scale material design; and mechanical modeling, including damage and fracture phenomena.

Jan Sokolowski is a Full Professor at the Institute of Mathematics (IECL) at the Université de Lorraine in Nancy, France, and at the Polish Academy of Sciences’ Systems Research Institute. He has published five monographs with Springer and Birkhauser, and over 200 research papers in international journals. His research focuses on shape and topology optimization for the systems described by partial differential equations.

Table of contents (5 chapters)

Table of contents (5 chapters)

書籍の購入

イーブック ¥5,615
価格の適用国: Japan (日本円価格は個人のお客様のみ有効) (小計)
  • ISBN 978-3-030-36915-6
  • ウォーターマーク付、 DRMフリー
  • ファイル形式: EPUB, PDF
  • どの電子書籍リーダーからでもすぐにお読みいただけます。
  • ご購入後、すぐにダウンロードしていただけます。
ソフトカバー ¥7,019
価格の適用国: Japan (日本円価格は個人のお客様のみ有効) (小計)
  • ISBN 978-3-030-36914-9
  • 個人のお客様には、世界中どこでも配送料無料でお届けします。
  • Usually dispatched within 3 to 5 business days.
Loading...

この書籍のサービス情報

あなたへのおすすめ

Loading...

書誌情報

Bibliographic Information
Book Title
An Introduction to the Topological Derivative Method
Authors
Series Title
SpringerBriefs in Mathematics
Copyright
2020
Publisher
Springer International Publishing
Copyright Holder
The Author(s), under exclusive license to Springer Nature Switzerland AG
イーブック ISBN
978-3-030-36915-6
DOI
10.1007/978-3-030-36915-6
ソフトカバー ISBN
978-3-030-36914-9
Series ISSN
2191-8198
Edition Number
1
Number of Pages
X, 114
Number of Illustrations
18 b/w illustrations, 6 illustrations in colour
Topics