Howard Rosenbrock Prize

Optimization and Engineering's Howard Rosenbrock Prize is awarded annually to honor the authors of the best paper published in the journal in the previous year.

Winners

2022

  • Subramanyam, A. (2022). A Lagrangian dual method for two-stage robust optimization with binary uncertainties. Optimization and Engineering volume 23(4), pp. 1831–1871. (Click here to read)

2021

  • Kronqvist, J. and Misener, R. (2021). A disjunctive cut strengthening technique for convex MINLP. Optimization and Engineering 22(3), pp. 1315–1345. (Click here to read)

2020

  • Labbé, M., Plein, F., and Schmidt, M. (2020). Bookings in the European gas market: characterisation of feasibility and computational complexity results. Optimization and Engineering 21(1), pp. 305–334. (Click here to read)

2019

  • Burlacu, R., Egger, H., Groß, M., Martin, A., Pfetsch, M.E. , Schewe, L., Sirvent, M., and Skutella, M. (2019). Maximizing the storage capacity of gas networks: a global MINLP approach. Optimization and Engineering 20(2), pp. 543–573. (Click here to read)

2018

  • Hoeltgen, L., Breuß, M., Herold, G., and Sarrad E. (2018). Sparse ℓ1 regularisation of matrix valued models for acoustic source characterisation. Optimization and Engineering 19(1), pp. 39–70. (Click here to read)

2017

  • Le Thi, H. A. and Dinh, T. P. (2017). Difference of convex functions algorithms (DCA) for image restoration via a Markov random field model. Optimization and Engineering 18(4), pp. 873–906. (Click here to read)

2016

  • Kim, T. and Wright, S. J. (2016). An Sl_1LP-active set approach for feasibility restoration in power systems. Optimization and Engineering 17(2), pp. 385–419. (Click here to read)

2015

  • Simon, M. and Ulbrich, M. (2015). Adjoint based optimal control of partially miscible two-phase flow in porous media with applications to CO2 sequestration in underground reservoirs. Optimization and Engineering 16(1), pp. 103–130. (Click here to read)

2014

  • Hicken, J. E. (2014). Inexact Hessian-vector products in reduce-space differential-equation constrained optimization. Optimization and Engineering 15(3), pp. 575–608. (Click here to read)