Call for Papers: Special Issue on Feature Engineering

The main objective of machine learning is to extract patterns to turn data into knowledge. Since the beginning of this century, technological advances have drastically changed the size of data sets as well as the speed with which these data must be analyzed. Modern data sets may have a huge number of instances, a very large number of features, or both. In most applications, data sets are compiled by combining data from different sources and databases (containing both structured and unstructured data) where each source of information has its strengths and weaknesses. Before applying any machine learning algorithm, it is therefore necessary to create interesting features from the data sources. This essential step, which is denoted “feature engineering” or feature extraction, is of utmost importance in the machine learning process.  Machine learners should be well aware of the power of feature engineering and it is important to share good practices.

This special issue aims to bring together innovative feature engineering techniques and/or successful development of features that improve the performance and/or interpretability of machine learning models. Both manual (relying on human creativity and/or domain knowledge) as well as automated (obtained for example from a relational dataset) feature engineering techniques are considered. We encourage novel featurization techniques that are based on diverse and alternative data sources and that leverage the temporal, granular, or unstructured aspects of the data.


Topics of Interest

We welcome original research papers on all aspects of feature engineering including, but not limited to the following topics:

  • Feature construction/creation/ transformation/selection/extraction
  • Extracting meaningful features from transactional data, network data, textual data, unstructured data, and/or temporal data
  • Constructing features using domain knowledge
  • Automatic feature creation
  • Feature engineering for anomaly detection
  • Feature engineering to reduce/avoid bias
  • Risks of feature engineering
  • Information/performance gain using correct feature engineering (case studies)

Contributions must contain new, unpublished, original and fundamental work relating to the Machine Learning Journal’s mission.  Purely theoretical papers without thorough empirical evaluation, simple surveys, and/or incremental contributions are discouraged. All submissions will be reviewed using rigorous scientific criteria whereby the novelty of the contribution will be crucial.

Submission Instructions

Submit manuscripts to: http://MACH.edmgr.com.  Select “Feature Engineering” as the article type.

Papers must be prepared in accordance with the Journal guidelines: 

https://www.springer.com/journal/10994

Authors are encouraged to submit high-quality, original work that has neither appeared in, nor is under consideration by other journals.

All papers will be reviewed following standard reviewing procedures for the Journal.

Key Dates

Date of Submission: March 1st, 2020

First review round: June 31st, 2020

Revision: October 1st, 2020

Final decision: December 30th, 2020

Guest Editors

Tim Verdonck, tim.verdonck@uantwerpen.be, University of Antwerp, Belgium (contact editor)

Bart Baesens, KU Leuven, Belgium

María Óskarsdóttir, Reykjavík University Iceland

Seppe vanden Broucke, Ghent University, Belgium