Skip to main content
Book cover

Cluster Analysis and Applications

  • Textbook
  • © 2021

Overview

  • Clear and precise definitions of basic concepts and notions in clustering, and analysis of their properties
  • Analysis and implementation of most important methods for searching for optimal partitions
  • Covers different primitives in clustering, such as points, lines, multiple lines, circles, and ellipses
  • A new efficient principle of choosing optimal partitions with the most appropriate number of clusters
  • Detailed description and analysis of several important applications

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 69.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (9 chapters)

Keywords

About this book

With the development of Big Data platforms for managing massive amount of data and wide availability of tools for processing these data, the biggest limitation is the lack of trained experts who are qualified to process and interpret the results.  This textbook is intended for graduate students and experts using methods of cluster analysis and applications in various fields.


Suitable for an introductory course on cluster analysis or data mining, with an in-depth mathematical treatment that includes discussions on different measures, primitives (points, lines, etc.) and optimization-based clustering methods, Cluster Analysis and Applications also includes coverage of deep learning based clustering methods.


With clear explanations of ideas and precise definitions of concepts, accompanied by numerous examples and exercises together with Mathematica programs and modules, Cluster Analysis and Applications may be used by students and researchers in various disciplines, working in data analysis or data science.

Authors and Affiliations

  • Department of Mathematics, University of Osijek, Osijek, Croatia

    Rudolf Scitovski, Kristian Sabo, Šime Ungar

  • Department of Computer Science, Pablo de Olavide University, Sevilla, Spain

    Francisco Martínez-Álvarez

About the authors

Rudolf Scitovski received his Ph.D. in Applied Mathematics from the University of Zagreb in 1984. He works as a Professor at the Department of Mathematics, University of Osijek. He was the Head of the Department of Mathematics for a long period of time. Before that, he was employed at the Faculty of Electrical Engineering and the Faculty of Economics, University of Osijek. His research interests include least square and least absolute deviations problems, clustering and global optimization. 

Kristian Sabo received his Ph.D. in Applied Mathematics from the University of Zagreb in 2007. He works as a Professor at the Department of Mathematics, University of Osijek. His research interests are Applied and Numerical Mathematics (Curve Fitting, Parameter Estimation, Data Cluster Analysis) with applications in Agriculture, Economy, Chemistry, Politics, Electrical Engineering, Medicine, Food Industry, Mechanical Engineering. 


Francisco Martínez-Álvarez recevied his Ph.D. in Computer Science from the Pablo de Olavide University in 2010. He works as a Professor at the Department of Computer Science, at the same univeristy. He was the Head of the Department of Computer Science for some years and co-founded the Data Science and Big Data Lab in 2015. He has been a visiting scholar to various universities, such as New York University, Universidad de Chile or Université de Lyon. His research interests include machine learning, optimization, forecasting and big data analytics. 


Šime Ungar received his Ph.D. in Topology from the University of Zagreb in 1977. He spent the academic year 1978/79 as a Visiting Assistant Professor at the Department of Mathematics, University of Utah, Salt Lake City, Utah, USA. He worked as a Professor at the Department of Mathematics, University of Zagreb and at the Department of Mathematics, University of Osijek, and is now retired. His research interest is in geometric and algebraic topology, mathematical analysis and inequalities.

Bibliographic Information

Publish with us