Skip to main content

The Hybrid High-Order Method for Polytopal Meshes

Design, Analysis, and Applications

  • Book
  • © 2020

Overview

  • Provides an introduction to the design and the mathematical aspects of Hybrid High-Order methods for diffusive problems
  • Addresses a panel of applications to advanced models in computational mechanics
  • Provides powerful tools for the analysis of discretisation methods for partial differential equations
  • Designed for graduate students and researchers in applied mathematics and numerical analysis

Part of the book series: MS&A (MS&A, volume 19)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (10 chapters)

  1. Foundations

  2. Applications to Advanced Models

Keywords

About this book

This monograph provides an introduction to the design and analysis of Hybrid High-Order methods for diffusive problems, along with a panel of applications to advanced models in computational mechanics. Hybrid High-Order methods are new-generation numerical methods for partial differential equations with features that set them apart from traditional ones. These include: the support of polytopal meshes, including non-star-shaped elements and hanging nodes; the possibility of having arbitrary approximation orders in any space dimension; an enhanced compliance with the physics; and a reduced computational cost thanks to compact stencil and static condensation.

The first part of the monograph lays the foundations of the method, considering linear scalar second-order models, including scalar diffusion – possibly heterogeneous and anisotropic – and diffusion-advection-reaction. The second part addresses applications to more complex models from the engineering sciences: non-linear Leray-Lions problems, elasticity, and incompressible fluid flows. This book is primarily intended for graduate students and researchers in applied mathematics and numerical analysis, who will find here valuable analysis tools of general scope.  


Reviews

     

Authors and Affiliations

  • Institut Montpelliérain Alexander Grothendieck, Université de Montpellier, Montpellier, France

    Daniele Antonio Di Pietro

  • School of Mathematics, Monash University, Clayton, Australia

    Jérôme Droniou

About the authors

Daniele A. Di Pietro has been a Full Professor since 2012 and Deputy Director of Institut Montpelliérain Alexander Grothendieck at the University of Montpellier (France) since 2019. He is the author of two research monographs published by Springer and more than 80 scientific papers in refereed international journals or conference proceedings. His research fields include the development and analysis of advanced numerical methods for partial differential equations, with applications to fluid and solid mechanics and porous media. Over the course of his career, he has supervised ten PhD students and six postdoctoral fellows.  

 

Jérôme Droniou was a Full Professor in France before moving to Monash university (Australia), where he has been an Associate Professor in the School of Mathematics  since 2018, and head of the applied and computational section  since 2019. He has authored two research monographs and more than 80 peer-reviewed articles and conference proceedings on theoretical and numerical analysis of partial differential equations. His current research interests revolve around the development of numerical methods for complex applications, and the design of mathematical tools to analyse the convergence of these methods. He has supervised a dozen PhD students and postdoctoral fellows in France and Australia.

Bibliographic Information

Publish with us