Skip to main content

Handbook of Neuroengineering

  • Reference work
  • © 2023

Overview

  • Comprehensive review of Neuroengineering and Neurotechnology
  • Covers a vast array of topics and applications in the field of Neuroengineering
  • Indispensable reference for professionals, academic researchers, clinicians, and students

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 949.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (102 entries)

  1. Neural Interface: Materials and Biological Responses

  2. Neural Interface: Devices, Fabrication, and Packaging

  3. Neural Sensors and Transducers

Keywords

About this book

This Handbook serves as an authoritative reference book in the field of Neuroengineering.  Neuroengineering is a very exciting field that is rapidly getting established as core subject matter for research and education. The Neuroengineering field has also produced an impressive array of industry products and clinical applications. It also serves as a reference book for graduate students, research scholars and teachers. Selected sections or a compendium of chapters may be used as “reference book” for a one or two semester graduate course in Biomedical Engineering. Some academicians will construct a “textbook” out of selected sections or chapters. The Handbook is also meant as a state-of-the-art volume for researchers. Due to its comprehensive coverage, researchers in one field covered by a certain section of the Handbook would find other sections valuable sources of cross-reference for information and fertilization of interdisciplinary ideas. Industry researchers as well as clinicians using neurotechnologies will find the Handbook a single source for foundation and state-of-the-art applications in the field of Neuroengineering. Regulatory agencies, entrepreneurs, investors and legal experts can use the Handbook as a reference for their professional work as well.​

Editors and Affiliations

  • Neuroengineering and Biomedical Instrumentation Laboratory Department of Biomedical Engineering and Department of Electrical and Computer Engineering, Neurology, Johns Hopkins University, Baltimore, USA

    Nitish V. Thakor

About the editor

Nitish V. Thakor is the Director the Singapore Institute for Neurotechnology (SINAPSE) at the National University of Singapore, as well as Professor of Electrical and Computer Engineering and Biomedical Engineering at NUS. He maintains his position as a Professor of Biomedical Engineering, Electrical and Computer Engineering and Neurology at Johns Hopkins University in the USA. Dr. Thakor’s technical expertise is in the field of Neuroengineering, including neural instrumentation, nuromorphic engineering, neural microsystems, optical imaging of the nervous system, neural control of prosthesis and brain machine interface and cognitive engineering. He has pioneered many technologies for brain monitoring to prosthetic arms and neuroprosthesis. He is an author of more than 290 refereed journal papers, more than a dozen patents, and co-founder of 3 companies. He is currently the Editor in Chief of Medical and Biological Engineering and Computing, and was the Editor in Chief of IEEE TNSRE from 2005-2011 and presently the EIC of Medical and Biological Engineering and Computing. Dr. Thakor is a recipient of a Research Career Development Award from the National Institutes of Health and a Presidential Young Investigator Award from the National Science Foundation, and is a Fellow of the American Institute of Medical and Biological Engineering, IEEE, Founding Fellow of the Biomedical Engineering Society, and Fellow of International Federation of Medical and Biological Engineering. He is a recipient of the award of Technical Excellence in Neuroengineering from IEEE Engineering in Medicine and Biology Society, Distinguished Alumnus Award from Indian Institute of Technology, Bombay, India, and a Centennial Medal from the University of Wisconsin School of Engineering. He has given more than 50 keynotes and plenary talks, and was the Chair of the IEEE Grand Challenges in Life Science Conference in 2013 and will chair IEEE BIOROB conference in Singapore in June 2016 and the Gordon Conference on Advanced Health Informatics in Hong Kong in July 2016​.

Bibliographic Information

Publish with us