Springer Series on Polymer and Composite Materials

Hyperbranched Polymers for Biomedical Applications

Authors: Bandyopadhyay, Abhijit, Sengupta, Srijoni, Das, Tamalika

Free Preview
  • Presents a detailed study of a new class of branched polymers—hyperbranched polymers
     
    Discusses biological applications of hyperbranched polymers
     
    Elaborates the structure–property relationship of hyperbranched polymers

Buy this book

eBook 101,14 €
price for Spain (gross)
  • ISBN 978-981-10-6514-9
  • Digitally watermarked, DRM-free
  • Included format: EPUB, PDF
  • ebooks can be used on all reading devices
  • Immediate eBook download after purchase
Hardcover 103,99 €
price for Spain (gross)
  • ISBN 978-981-10-6513-2
  • Free shipping for individuals worldwide
  • Usually dispatched within 3 to 5 business days.
  • The final prices may differ from the prices shown due to specifics of VAT rules
Softcover 124,79 €
price for Spain (gross)
  • ISBN 978-981-13-4895-2
  • Free shipping for individuals worldwide
  • Usually dispatched within 3 to 5 business days.
  • The final prices may differ from the prices shown due to specifics of VAT rules
About this book

This book presents a comprehensive study on a new class of branched polymers, known as hyperbranched polymers (HBPs). It discusses in detail the synthesis strategies for these particular classes of polymers as well as biocompatible and biodegradable HBPs, which are of increasing interest to polymer technologists due to their immense potential in biomedical applications. The book also describes the one-pot synthesis technique for HBPs, which is feasible for large-scale production, as well as HBPs’ structure-property relationship, which makes them superior to their linear counterparts. The alterable functional groups present at the terminal ends of the branches make HBPs promising candidates in the biomedical domain, and the book specifically elaborates on the suitable characteristic properties of each of the potential biological HBPs’ applications. As such, the book offers a valuable reference guide for all scientists and technologists who are interested in using these newly developed techniques to achieve faster and better treatments.

About the authors

Dr. Abhijit Bandyopadhyay holds an M.Tech and Ph.D. in Polymer Science and Technology and is currently Head of the Department of Polymer Science and Technology, University of Calcutta. He is also a Technical Director at the South Asian Rubber & Polymers Park (SARPOL) in West Bengal, India. He is a former Assistant Professor of the Rubber Technology Centre at the Indian Institute of Technology Kharagpur (IIT Kharagpur), India. He has more than 10 years of teaching and research experience and has published more than 75 research papers in high-impact international journals, four book chapters, one book and holds one Indian patent. He has received numerous awards, including the Young Scientist Award from the Materials Research Society of India, Calcutta Chapter; the Young Scientist Award from the Department of Science & Technology, Government of India; and the Career Award for Young Teachers from the All India Council for Technical Education, Government of India. He is a life member of the Society for Polymer Science, India, Associate Life Member of the Indian Institute of Chemical Engineers and a Fellow of the International Congress of Environmental Research. He also serves on the Editorial Boards of various international journals. Ms. Srijoni Sengupta is a research scholar at the Department of Polymer Science and Technology, University of Calcutta, India. She received her initial degree in Chemistry (Hons) from Lady Brabourne College (Kolkata) in 2010 before completing her B.Tech (2013) and M.Tech (2015) in Polymer Science and Technology at the University of Calcutta. She is currently pursuing her Ph.D. on the “Synthesis, Study of Structure-Property Relationships and Potential Applications of Hyperbranched Polymers via Polycondensation Technique”. She has published a number of papers in research journals and is presently engaged in an INSPIRE Fellowship from the Department of Science and Technology, Government of India. Ms. Tamalika Das graduated in Chemistry (Hons) from Scottish Church College (Kolkata) in 2008. She subsequently completed her B.Tech (2011) and M.Tech (2013) degrees at the Department of Polymer Science and Technology at the University of Calcutta. She was awarded the gold medal from the University of Calcutta twice (during both her B.Tech and M.Tech). She did her M.Tech project at the Indian Association for the Cultivation of Science (Kolkata). Currently, she is pursuing her doctoral research at the Department of Polymer Science and Technology at the University of Calcutta. Her main area of interest is hyperbranched polymers. She has published one paper in a high-impact international journal and is currently engaged in an INSPIRE Fellowship from the Department of Science and Technology, Government of India.

Table of contents (8 chapters)

Table of contents (8 chapters)

Buy this book

eBook 101,14 €
price for Spain (gross)
  • ISBN 978-981-10-6514-9
  • Digitally watermarked, DRM-free
  • Included format: EPUB, PDF
  • ebooks can be used on all reading devices
  • Immediate eBook download after purchase
Hardcover 103,99 €
price for Spain (gross)
  • ISBN 978-981-10-6513-2
  • Free shipping for individuals worldwide
  • Usually dispatched within 3 to 5 business days.
  • The final prices may differ from the prices shown due to specifics of VAT rules
Softcover 124,79 €
price for Spain (gross)
  • ISBN 978-981-13-4895-2
  • Free shipping for individuals worldwide
  • Usually dispatched within 3 to 5 business days.
  • The final prices may differ from the prices shown due to specifics of VAT rules
Loading...

Recommended for you

Loading...

Bibliographic Information

Bibliographic Information
Book Title
Hyperbranched Polymers for Biomedical Applications
Authors
Series Title
Springer Series on Polymer and Composite Materials
Copyright
2018
Publisher
Springer Singapore
Copyright Holder
Springer Nature Singapore Pte Ltd.
eBook ISBN
978-981-10-6514-9
DOI
10.1007/978-981-10-6514-9
Hardcover ISBN
978-981-10-6513-2
Softcover ISBN
978-981-13-4895-2
Series ISSN
2364-1878
Edition Number
1
Number of Pages
XI, 178
Number of Illustrations
109 b/w illustrations
Topics